ﻻ يوجد ملخص باللغة العربية
We develop the deformation theory of cohomological field theories (CohFTs), which is done as a special case of a general deformation theory of morphisms of modular operads. This leads us to introduce two new natural extensions of the notion of a CohFT: homotopical (necessary to structure chain-level Gromov--Witten invariants) and quantum (with examples found in the works of Buryak--Rossi on integrable systems). We introduce a new version of Kontsevichs graph complex, enriched with tautological classes on the moduli spaces of stable curves. We use it to study a new universal deformation group which acts naturally on the moduli spaces of quantum homotopy CohFTs, by methods due to Merkulov--Willwacher. This group is shown to contain both the prounipotent Grothendieck--Teichmuller group and the Givental group.
We introduce and study several new topological operads that should be regarded as nonsymmetric analogues of the operads of little 2-disks, framed little 2-disks, and Deligne-Mumford compactifications of moduli spaces of genus zero curves with marked
A method of constructing Cohomological Field Theories (CohFTs) with unit using minimal classes on the moduli spaces of curves is developed. As a simple consequence, CohFTs with unit are found which take values outside of the tautological cohomology o
In his 2011 paper, Teleman proved that a cohomological field theory on the moduli space $overline{mathcal{M}}_{g,n}$ of stable complex curves is uniquely determined by its restriction to the smooth part $mathcal{M}_{g,n}$, provided that the underlyin
The main purpose of this paper is a mathematical construction of a non-perturbative deformation of a two-dimensional conformal field theory. We introduce a notion of a full vertex algebra which formulates a compact two-dimensional conformal field the
We develop a framework for derived deformation theory, valid in all characteristics. This gives a model category reconciling local and global approaches to derived moduli theory. In characteristic 0, we use this to show that the homotopy categories o