ﻻ يوجد ملخص باللغة العربية
The results from a spectro-polarimetric study of the planet-hosting Sun-like star, HD 147513 (G5V), are presented here. Robust detections of Zeeman signatures at all observed epochs indicate a surface magnetic field, with longitudinal magnetic field strengths varying between 1.0-3.2 G. Radial velocity variations from night to night modulate on a similar timescale to the longitudinal magnetic field measurements. These variations are therefore likely due to the rotational modulation of stellar active regions rather than the much longer timescale of the planetary orbit (Porb=528 d). Both the longitudinal magnetic field measurements and radial velocity variations are consistent with a rotation period of 10 +/- 2 days, which are also consistent with the measured chromospheric activity level of the star (log R(HK)=-4.64). Together, these quantities indicate a low inclination angle, i~18 degrees. We present preliminary magnetic field maps of the star based on the above period and find a simple poloidal large-scale field. Chemical analyses of the star have revealed that it is likely to have undergone a barium-enrichment phase in its evolution because of a higher mass companion. Despite this, our study reveals that the star has a fairly typical activity level for its rotation period and spectral type. Future studies will enable us to explore the long-term evolution of the field, as well as to measure the stellar rotation period, with greater accuracy.
AU Mic is a young, very active M dwarf star with a debris disk and at least one transiting Neptune-size planet. Here we present detailed analysis of the magnetic field of AU Mic based on previously unpublished high-resolution optical and near-infrare
Characterization of the dynamics of massive star systems and the astrophysical properties of the interacting components are a prerequisite for understanding their formation and evolution. Optical interferometry at milliarcsecond resolution is a key o
We analyse the magnetic activity characteristics of the planet hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements consistent wit
We report on the discovery and validation of a two-planet system around a bright (V = 8.85 mag) early G dwarf (1.43 $R_{odot}$, 1.15 $M_{odot}$, TOI 2319) using data from NASAs Transiting Exoplanet Survey Satellite (TESS). Three transit events from t
HD 106906 is a young, binary stellar system, located in the Lower Centaurus Crux (LCC) group. This system is unique among discovered systems in that it contains an asymmetrical debris disk, as well as an 11 M$_{Jup}$ planet companion, at a separation