ﻻ يوجد ملخص باللغة العربية
Characterization of the dynamics of massive star systems and the astrophysical properties of the interacting components are a prerequisite for understanding their formation and evolution. Optical interferometry at milliarcsecond resolution is a key observing technique for resolving high-mass multiple compact systems. Here we report on VLTI/GRAVITY, Magellan/FIRE, and MPG2.2m/FEROS observations of the late-O/early-B type system HD 93206 A, which is a member of the massive cluster Collinder 228 in the Carina nebula complex. With a total mass of about 90 M_sun, it is one of the most compact massive-quadruple systems known. In addition to measuring the separation and position angle of the outer binary Aa - Ac, we observe BrG and HeI variability in phase with the orbital motion of the two inner binaries. From the differential phases analysis, we conclude that the BrG emission arises from the interaction regions within the components of the individual binaries, which is consistent with previous models for the X-ray emission of the system based on wind-wind interaction. With an average 3-sigma deviation of ~15 deg, we establish an upper limit of p ~ 0.157 mas (0.35 AU) for the size of the BrG line-emitting region. Future interferometric observations with GRAVITY using the 8m UTs will allow us to constrain the line-emitting regions down to angular sizes of 20 uas (0.05 AU at the distance of the Carina nebula).
We obtained spectro-interferometric observations in the visible of $beta$ Lyrae and $upsilon$ Sgr using the instrument VEGA of the CHARA interferometric array. For $beta$ Lyrae, the dispersed fringe visibilities and differential phases were obtained
The results from a spectro-polarimetric study of the planet-hosting Sun-like star, HD 147513 (G5V), are presented here. Robust detections of Zeeman signatures at all observed epochs indicate a surface magnetic field, with longitudinal magnetic field
Giant stars, and especially C-rich giants, contribute significantly to the chemical enrichment of galaxies. The determination of precise parameters for these stars is a necessary prerequisite for a proper implementation of this evolutionary phase in
Context: Massive stars are extremely important for the evolution of the galaxies; there are large gaps in our understanding of their properties and formation, however, mainly because they evolve rapidly, are rare, and distant. It may well be that alm
We revisit the analysis of the bright multiplanet system K2-93, discovered with data taken by the K2 mission. This system contains five identified planets ranging in size from sub-Neptune to Jupiter size. The K2 data available at the discovery of the