ترغب بنشر مسار تعليمي؟ اضغط هنا

A Deep Polarimetric Study of the Asymmetrical Debris Disk HD 106906

182   0   0.0 ( 0 )
 نشر من قبل Katherine Crotts
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HD 106906 is a young, binary stellar system, located in the Lower Centaurus Crux (LCC) group. This system is unique among discovered systems in that it contains an asymmetrical debris disk, as well as an 11 M$_{Jup}$ planet companion, at a separation of $sim$735 AU. Only a handful of other systems are known to contain both a disk and directly imaged planet, where HD 106906 is the only one in which the planet has apparently been scattered. The debris disk is nearly edge on, and extends roughly to $>$500 AU, where previous studies with HST have shown the outer regions to have high asymmetry. To better understand the structure and composition of the disk, we have performed a deep polarimetric study of HD 106906s asymmetrical debris disk using newly obtained $H$-, $J$-, and $K1$-band polarimetric data from the Gemini Planet Imager (GPI). An empirical analysis of our data supports a disk that is asymmetrical in surface brightness and structure, where fitting an inclined ring model to the disk spine suggests that the disk may be highly eccentric ($egtrsim0.16$). A comparison of the disk flux with the stellar flux in each band suggests a blue color that also does not significantly vary across the disk. We discuss these results in terms of possible sources of asymmetry, where we find that dynamical interaction with the planet companion, HD 106906b, is a likely candidate.

قيم البحث

اقرأ أيضاً

Models of debris disk morphology are often focused on the effects of a planet orbiting interior to or within the disk. Nonetheless, an exterior planetary-mass perturber can also excite eccentricities in a debris disk, via Laplace-Lagrange secular per turbations in the coplanar case or Kozai-Lidov perturbations for mutually inclined companions and disks. HD 106906 is an ideal example of such a system, as it harbors a confirmed exterior 11 M_Jup companion at a projected separation of 650 au outside a resolved, asymmetric disk. We use collisional and dynamical simulations to investigate the interactions between the disk and the companion, and to use the disks observed morphology to place constraints on the companions orbit. We conclude that the disks observed morphology is consistent with perturbations from the observed exterior companion. Generalizing this result, we suggest that exterior perturbers, as well as interior planets, should be considered when investigating the cause of observed asymmetries in a debris disk.
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: $J$, $K_S$, and $L^prime$, and lies at a projected separation of 7. 1 (650 AU). It is confirmed to be comoving with its $13pm2$ Myr-old F5 host using Hubble Space Telescope/Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict the companions luminosity corresponds to a mass of $11pm2 M_{Jup}$, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette $J/H/K$ spectrum as L$2.5pm1$; the triangular $H$-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric ($e>0.65$) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations $>35$ AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at $<1%$, is unusually small.
We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius $sim$50 AU, and an outer extent $>$500 AU. The HST data show the outer regions are highly asymmetric, resembling the needle morphology seen for the HD 15115 debris disk. The planet candidate is oriented $sim$21$deg$ away from the position angle of the primarys debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primarys disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.
We present a Subaru/IRCS H-band image of the edge-on debris disk around the F2V star HD 15115. We detected the debris disk, which has a bow shape and an asymmetric surface brightness, at a projected separation of 1--3 (~50--150 AU). The disk surface brightness is ~0.5--1.5 mag brighter on the western side than on the eastern side. We use an inclined annulus disk model to probe the disk geometry. The model fitting suggests that the disk has an inner hole with a radius of 86 AU and an eccentricity of 0.06. The disk model also indicates that the amount of dust on the western side is 2.2 times larger than that on the eastern side. A several Jupiter-mass planet may exist at $gtrsim$45 AU and capture grains at the Lagrangian points to open the eccentric gap. This scenario can explain both the eccentric gap and the difference in the amount of dust. In case of the stellar age of several 100 Myr, a dramatic planetesimal collision possibly causes the dust to increase in the western side. Interstellar medium interaction is also considered as a possible explanation of the asymmetric surface brightness, however, it hardly affect large grains in the vicinity of the inner hole.
We present an adaptive optics imaging detection of the HD 32297 debris disk at L (3.8 microns) obtained with the LBTI/LMIRcam infrared instrument at the LBT. The disk is detected at signal-to-noise per resolution element ~ 3-7.5 from ~ 0.3-1.1 (30-12 0 AU). The disk at L is bowed, as was seen at shorter wavelengths. This likely indicates the disk is not perfectly edge-on and contains highly forward scattering grains. Interior to ~ 50 AU, the surface brightness at L rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at $lesssim$ 50 AU. Comparing the color of the outer (50 $< r$/AU $< 120$) portion of the disk at L with archival HST/NICMOS images of the disk at 1-2 microns allows us to test the recently proposed cometary grains model of Donaldson et al. 2013. We find that the model fails to match the disks surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.9). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 microns is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا