ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse scattering on the line for Schrodinger operators with Miura potentials, II. Different Riccati representatives

147   0   0.0 ( 0 )
 نشر من قبل Rostyslav O. Hryniv
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the second in a series of papers on scattering theory for one-dimensional Schrodinger operators with Miura potentials admitting a Riccati representation of the form $q=u+u^2$ for some $uin L^2(R)$. We consider potentials for which there exist `left and `right Riccati representatives with prescribed integrability on half-lines. This class includes all Faddeev--Marchenko potentials in $L^1(R,(1+|x|)dx)$ generating positive Schrodinger operators as well as many distributional potentials with Dirac delta-functions and Coulomb-like singularities. We completely describe the corresponding set of reflection coefficients $r$ and justify the algorithm reconstructing $q$ from $r$.



قيم البحث

اقرأ أيضاً

This is the first in a series of papers on scattering theory for one-dimensional Schrodinger operators with highly singular potentials $qin H^{-1}(R)$. In this paper, we study Miura potentials $q$ associated to positive Schrodinger operators that adm it a Riccati representation $q=u+u^2$ for a unique $uin L^1(R)cap L^2(R)$. Such potentials have a well-defined reflection coefficient $r(k)$ that satisfies $|r(k)|<1$ and determines $u$ uniquely. We show that the scattering map $S:umapsto r$ is real-analytic with real-analytic inverse. To do so, we exploit a natural complexification of the scattering map associated with the ZS-AKNS system. In subsequent papers, we will consider larger classes of potentials including singular potentials with bound states.
We study the direct and inverse scattering problem for the one-dimensional Schrodinger equation with steplike potentials. We give necessary and sufficient conditions for the scattering data to correspond to a potential with prescribed smoothness and prescribed decay to their asymptotics. These results are important for solving the Korteweg-de Vries equation via the inverse scattering transform.
522 - Georgi Raikov 2015
We consider the Schrodinger operator $H_{eta W} = -Delta + eta W$, self-adjoint in $L^2({mathbb R}^d)$, $d geq 1$. Here $eta$ is a non constant almost periodic function, while $W$ decays slowly and regularly at infinity. We study the asymptotic behav iour of the discrete spectrum of $H_{eta W}$ near the origin, and due to the irregular decay of $eta W$, we encounter some non semiclassical phenomena. In particular, $H_{eta W}$ has less eigenvalues than suggested by the semiclassical intuition.
128 - David Damanik 2019
We show that a generic quasi-periodic Schrodinger operator in $L^2(mathbb{R})$ has purely singular spectrum. That is, for any minimal translation flow on a finite-dimensional torus, there is a residual set of continuous sampling functions such that f or each of these sampling functions, the Schrodinger operator with the resulting potential has empty absolutely continuous spectrum.
217 - Laurent Amour 2007
We consider the Schrodinger operator on $[0,1]$ with potential in $L^1$. We prove that two potentials already known on $[a,1]$ ($ain(0,{1/2}]$) and having their difference in $L^p$ are equal if the number of their common eigenvalues is sufficiently l arge. The result here is to write down explicitly this number in terms of $p$ (and $a$) showing the role of $p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا