ترغب بنشر مسار تعليمي؟ اضغط هنا

Core-Polarization and Relativistic Effects in Electron Affinity Calculations for Atoms: A Complex Angular Momentum Investigation

49   0   0.0 ( 0 )
 نشر من قبل Zineb Felfli
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Core-polarization interactions are investigated in low-energy electron elastic scattering from the atoms In,Sn,Eu,Au and At through the calculation of their electron affinities. The complex angular momentum method wherein is embedded the vital electron-electron correlations is used. The core-polarization effects are studied through the well investigated rational function approximation of the Thomas-Fermi potential,which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the calculated low-energy electron atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlation effects and core polarization interactions are accounted for adequately the importance of relativity on the calculation of the electron affinities of atoms can be assessed. For At, relativistic effects are estimated to contribute a maximum of about 3.6 percent to its (non-relativistic) calculated electron affinity.



قيم البحث

اقرأ أيضاً

214 - V.M. Shabaev , I.I. Tupitsyn , 2013
A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined usin g the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.
Exchange of orbital angular momentum between Laguerre-Gaussian beam of light and center-of-mass motion of an atom or molecule is well known. We show that orbital angular momentum of light can also be transferred to the internal electronic or rotation al motion of an atom or a molecule provided the internal and center-of-mass motions are coupled. However, this transfer does not happen directly to the internal motion, but via center-of-mass motion. If atoms or molecules are cooled down to recoil limit then an exchange of angular momentum between the quantized center-of-mass motion and the internal motion is possible during interaction of cold atoms or molecules with Laguerre-Gaussian beam. The orientation of the exchanged angular momentum is determined by the sign of the winding number of Laguerre-Gaussian beam. We have presented selective results of numerical calculations for the quadrupole transition rates in interaction of Laguerre-Gaussian beam with an atomic Bose-Einstein condensate to illustrate the underlying mechanism of light orbital angular momentum transfer. We discuss how the alignment of diatomic molecules will facilitate to explore the effects of light orbital angular momentum on electronic motion of molecules.
We study the single-particle properties of a system formed by ultracold atoms loaded into the manifold of $l=1$ Orbital Angular Momentum (OAM) states of an optical lattice with a diamond chain geometry. Through a series of successive basis rotations, we show that the OAM degree of freedom induces phases in some tunneling amplitudes of the tight-binding model that are equivalent to a net $pi$ flux through the plaquettes and give rise to a topologically non-trivial band structure and protected edge states. In addition, we demonstrate that quantum interferences between the different tunneling processes involved in the dynamics may lead to Aharanov-Bohm caging in the system. All these analytical results are confirmed by exact diagonalization numerical calculations.
The electron affinity (EA) of superheavy element Og is calculated by the use of the relativistic Fock-space coupled cluster (FSCC) and configuration interaction methods. The FSCC cluster operator expansion included single, double, and triple excitati ons treated in a non-perturbative manner. The Gaunt and retardation electron-electron interactions are taken into account. Both methods yield the results that are in agreement with each other. The quantum electrodynamics correction to EA is evaluated using the model Lamb-shift operator approach. The electron affinity of Og is obtained to be 0.076(4) eV.
Relativistic atomic structure calculations are carried out in alkaline-earth-metal ions using a semiempirical-core-potential approach. The systems are partitioned into frozen-core electrons and an active valence electron. The core orbitals are define d by a Dirac-Hartree-Fock calculation using the grasp2k package. The valence electron is described by a Dirac-like Hamiltonian involving a core-polarization potential to simulate the core-valence electron correlation. The associated equation is solved with the Lagrange-mesh method, which is an approximate variational approach having the form of a mesh calculation because of the use of a Gauss quadrature to calculate matrix elements. Properties involving the low-lying metastable $^2D_{3/2,5/2}$ states of Ca$^{+}$, Sr$^{+}$, and Ba$^{+}$ are studied, such as polarizabilities, one- and two-photon decay rates, and lifetimes. Good agreement is found with other theory and observation, which is promising for further applications in alkali-like systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا