ترغب بنشر مسار تعليمي؟ اضغط هنا

Model operator approach to the Lamb shift calculations in relativistic many-electron atoms

231   0   0.0 ( 0 )
 نشر من قبل V. M. Shabaev
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A model operator approach to calculations of the QED corrections to energy levels in relativistic many-electron atomic systems is developed. The model Lamb shift operator is represented by a sum of local and nonlocal potentials which are defined using the results of ab initio calculations of the diagonal and nondiagonal matrix elements of the one-loop QED operator with H-like wave functions. The model operator can be easily included in any calculations based on the Dirac-Coulomb-Breit Hamiltonian. Efficiency of the method is demonstrated by comparison of the model QED operator results for the Lamb shifts in many-electron atoms and ions with exact QED calculations.



قيم البحث

اقرأ أيضاً

We report a new measurement of the $n=2$ Lamb shift in Muonium using microwave spectroscopy. Our result of $1047.2(2.3)_textrm{stat}(1.1)_textrm{syst}$ MHz comprises an order of magnitude improvement upon the previous best measurement. This value mat ches the theoretical calculation within one standard deviation allowing us to set limits on CPT violation in the muonic sector, as well as on new physics coupled to muons and electrons which could provide an explanation of the muon $g-2$ anomaly.
In view of the future plans to measure the Lamb shift in muonic Lithium atoms we address the microscopic theory of the $mu$-$^6$Li$^{2+}$ and $mu$-$^7$Li$^{2+}$ systems. The goal of the CREMA collaboration is to measure the Lamb shift to extract the charge radius with high precision and compare it to electron scattering data or atomic spectroscopy to see if interesting puzzles, such as the proton and deuteron radius puzzles, arise. For this experiment to be successful, theoretical information on the nuclear structure corrections to the Lamb shift is needed. For $mu$-$^6$Li$^{2+}$ and $mu$-$^7$Li$^{2+}$ there exist only estimates of nuclear structure corrections based on experimental data that suffer from very large uncertainties. We present the first steps towards an ab initio computation of these quantities using few-body techniques.
48 - Z. Felfli , A.Z. Msezane 2015
Core-polarization interactions are investigated in low-energy electron elastic scattering from the atoms In,Sn,Eu,Au and At through the calculation of their electron affinities. The complex angular momentum method wherein is embedded the vital electr on-electron correlations is used. The core-polarization effects are studied through the well investigated rational function approximation of the Thomas-Fermi potential,which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the calculated low-energy electron atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlation effects and core polarization interactions are accounted for adequately the importance of relativity on the calculation of the electron affinities of atoms can be assessed. For At, relativistic effects are estimated to contribute a maximum of about 3.6 percent to its (non-relativistic) calculated electron affinity.
The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, cor responding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.
Virtual photons can mediate interaction between atoms, resulting in an energy shift known as a collective Lamb shift. Observing the collective Lamb shift is challenging, since it can be obscured by radiative decay and direct atom-atom interactions. H ere, we place two superconducting qubits in a transmission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth. We also show that the qubits can interact via the transmission line even if one of them does not decay into it.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا