ﻻ يوجد ملخص باللغة العربية
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-adiabatic equations are introduced and thoroughly discussed. Two types of pulsation are distinguished, namely the self-excited oscillations that result from an instability and the solar-like oscillations that result from a balance between driving and damping by turbulent convection. For each type, the main physical principles are presented and illustrated using recent observations obtained with the ultra-high precision photometry space-borne missions (MOST, CoRoT and Kepler). Finally, we consider in detail the physics of scaling relations, which relates the seismic global indices with the global stellar parameters and gave birth to the development of statistical (or ensemble) asteroseismology. Indeed, several of these relations rely on the same cause: the physics of non-adiabatic oscillations.
This lecture on adiabatic oscillations is intended to present the basis of asteroseismology and to serve as an introduction for other lectures of the EES 2014. It also exposes the state-of-the-art of solar-like oscillation analysis, as revealed by th
Recent numerical and theoretical considerations have shown that low-degree acoustic modes in rapidly rotating stars follow an asymptotic formula and recent observations of pulsations in rapidly rotating delta Scuti stars seem to match these expectati
Early-type stars generally tend to be fast rotators. In these stars, mode identification is very challenging as the effects of rotation are not well known. We consider here the example of $alpha$ Ophiuchi, for which dozens of oscillation frequencies
CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum of two red giants in the same region of the HR diagram but in differ
Context. The large quantity of high-quality asteroseismic data that obtained from space-based photometric missions and the accuracy of the resulting frequencies motivate a careful consideration of the accuracy of computed oscillation frequencies of s