ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-radial, non-adiabatic solar-like oscillations in RGB and HB stars

126   0   0.0 ( 0 )
 نشر من قبل Mathieu Grosjean
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CoRoT and Kepler observations of red giants reveal rich spectra of non-radial solar-like oscillations allowing to probe their internal structure. We compare the theoretical spectrum of two red giants in the same region of the HR diagram but in different evolutionary phases. We present here our first results on the inertia, lifetimes and amplitudes of the oscillations and discuss the differences between the two stars.

قيم البحث

اقرأ أيضاً

A growing number of solar-like oscillations has been detected in red giant stars thanks to CoRoT and Kepler space-crafts. The seismic data gathered by CoRoT on red giant stars allow us to test mode driving theory in physical conditions different from main-sequence stars. Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red giant stars, we computed the acoustic mode energy supply rate (Pmax). Assuming adiabatic pulsations and using global stellar models that assume that the surface stratification comes from the 3D hydrodynamical models, we computed the mode amplitude in terms of surface velocity. This was converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one. From L and M (the luminosity and mass), the energy supply rate Pmax is found to scale as (L/M)^2.6 for both main-sequence and red giant stars, extending previous results. The theoretical amplitudes in velocity under-estimate the Doppler velocity measurements obtained so far from the ground for red giant stars by about 30%. In terms of intensity, the theoretical scaling law based on the adiabatic intensity-velocity scaling relation results in an under-estimation by a factor of about 2.5 with respect to the CoRoT seismic measurements. On the other hand, using the non-adiabatic intensity-velocity relation significantly reduces the discrepancy with the CoRoT data. The theoretical amplitudes remain 40% below, however, the CoRoT measurements. Our results show that scaling relations of mode amplitudes cannot be simply extended from main-sequence to red giant stars in terms of intensity on the basis of adiabatic relations because non-adiabatic effects for red giant stars are important and cannot be neglected. We discuss possible reasons for the remaining differences.
We present a brief overview of the history of attempts to obtain a clear detection of solar-like oscillations in cluster stars, and discuss the results on the first clear detection, which was made by the Kepler Asteroseismic Science Consortium (KASC) Working Group 2.
Early-type stars generally tend to be fast rotators. In these stars, mode identification is very challenging as the effects of rotation are not well known. We consider here the example of $alpha$ Ophiuchi, for which dozens of oscillation frequencies have been measured. We model the star using the two-dimensional structure code ESTER, and we compute both adiabatic and non-adiabatic oscillations using the TOP code. Both calculations yield very complex spectra, and we used various diagnostic tools to try and identify the observed pulsations. While we have not reached a satisfactory mode-to-mode identification, this paper presents promising early results.
169 - R. Samadi , K. Belkacem , T. Sonoi 2015
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-adiabatic equations are introduced and thoroughly discussed. Two types of pulsation are distinguished, namely the self-excited oscillations that result from an instability and the solar-like oscillations that result from a balance between driving and damping by turbulent convection. For each type, the main physical principles are presented and illustrated using recent observations obtained with the ultra-high precision photometry space-borne missions (MOST, CoRoT and Kepler). Finally, we consider in detail the physics of scaling relations, which relates the seismic global indices with the global stellar parameters and gave birth to the development of statistical (or ensemble) asteroseismology. Indeed, several of these relations rely on the same cause: the physics of non-adiabatic oscillations.
72 - D. R. Xiong , L. Deng , C. Zhang 2018
We have computed linear non-adiabatic oscillations of luminous red giants using a non-local and anisotropic time-dependent theory of convection. The results show that low-order radial modes can be self-excited. Their excitation is the result of radia tion and the coupling between convection and oscillations. Turbulent pressure has important effects on the excitation of oscillations in red variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا