ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillations of 2D ESTER models. I. The adiabatic case

139   0   0.0 ( 0 )
 نشر من قبل Daniel Reese
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent numerical and theoretical considerations have shown that low-degree acoustic modes in rapidly rotating stars follow an asymptotic formula and recent observations of pulsations in rapidly rotating delta Scuti stars seem to match these expectations. However, a key question is whether strong gradients or discontinuities can adversely affect this pattern to the point of hindering its identification. Other important questions are how rotational splittings are affected by the 2D rotation profiles expected from baroclinic effects and whether it is possible to probe the rotation profile using these splittings. Accordingly, we numerically calculate pulsation modes in continuous and discontinuous rapidly rotating models produced by the 2D ESTER (Evolution STEllaire en Rotation) code. This spectral multi-domain code self-consistently calculates the rotation profile based on baroclinic effects and allows us to introduce discontinuities without loss of numerical accuracy. Pulsations are calculated using an adiabatic version of the Two-dimensional Oscillation Program (TOP) code. The variational principle is used to confirm the high accuracy of the pulsation frequencies and to derive an integral formula that closely matches the generalised rotational splittings, except when modes are involved in avoided crossings. This potentially allows us to probe the the rotation profile using inverse theory. Acoustic glitch theory, applied along the island mode orbit deduced from ray dynamics, can correctly predict the periodicity of the glitch frequency pattern produced by a discontinuity or the Gamma1 dip related to the He II ionisation zone in some of the models. The asymptotic frequency pattern remains sufficiently well preserved to potentially allow its detection in observed stars.



قيم البحث

اقرأ أيضاً

One of the greatest challenges in interpreting the pulsations of rapidly rotating stars is mode identification, i.e. correctly matching theoretical modes to observed pulsation frequencies. Indeed, the latest observations as well as current theoretica l results show the complexity of pulsation spectra in such stars, and the lack of easily recognisable patterns. In the present contribution, the latest results on non-adiabatic effects in such pulsations are described, and we show how these come into play when identifying modes. These calculations fully take into account the effects of rapid rotation, including centrifugal distortion, and are based on models from the ESTER project, currently the only rapidly rotating models in which the energy conservation equation is satisfied, a prerequisite for calculating non-adiabatic effects. Non-adiabatic effects determine which modes are excited and play a key role in the near-surface pulsation-induced temperature variations which intervene in multi-colour amplitude ratios and phase differences, as well as line profile variations.
72 - Benoit Mosser 2015
This lecture on adiabatic oscillations is intended to present the basis of asteroseismology and to serve as an introduction for other lectures of the EES 2014. It also exposes the state-of-the-art of solar-like oscillation analysis, as revealed by th e space missions CoRoT and Kepler. A large part of the lecture is devoted to the interpretation of the modes with a mixed character that reveal the properties of the radiative cores of subgiants and red giants.
169 - R. Samadi , K. Belkacem , T. Sonoi 2015
A leap forward has been performed due to the space-borne missions, MOST, CoRoT and Kepler. They provided a wealth of observational data, and more precisely oscillation spectra, which have been (and are still) exploited to infer the internal structure of stars. While an adiabatic approach is often sufficient to get information on the stellar equilibrium structures it is not sufficient to get a full understanding of the physics of the oscillation. Indeed, it does not permit one to answer some fundamental questions about the oscillations, such as: What are the physical mechanisms responsible for the pulsations inside stars? What determines the amplitudes? To what extent the adiabatic approximation is valid? All these questions can only be addressed by considering the energy exchanges between the oscillations and the surrounding medium. This lecture therefore aims at considering the energetical aspects of stellar pulsations with particular emphasis on the driving and damping mechanisms. To this end, the full non-adiabatic equations are introduced and thoroughly discussed. Two types of pulsation are distinguished, namely the self-excited oscillations that result from an instability and the solar-like oscillations that result from a balance between driving and damping by turbulent convection. For each type, the main physical principles are presented and illustrated using recent observations obtained with the ultra-high precision photometry space-borne missions (MOST, CoRoT and Kepler). Finally, we consider in detail the physics of scaling relations, which relates the seismic global indices with the global stellar parameters and gave birth to the development of statistical (or ensemble) asteroseismology. Indeed, several of these relations rely on the same cause: the physics of non-adiabatic oscillations.
We numerically investigate the dynamics of a 2D non-magnetised protoplanetary disc surrounded by an inflow coming from an external envelope. We find that the accretion shock between the disc and the inflow is unstable, leading to the generation of la rge-amplitude spiral density waves. These spiral waves propagate over long distances, down to radii at least ten times smaller than the accretion shock radius. We measure spiral-driven outward angular momentum transport with 1e-4 < alpha < 1e-2 for an inflow accretion rate Mout>1e-8 Msun/yr. We conclude that the interaction of the disc with its envelope leads to long-lived spiral density waves and radial angular momentum transport with rates that cannot be neglected in young non-magnetised protostellar discs.
Early-type stars generally tend to be fast rotators. In these stars, mode identification is very challenging as the effects of rotation are not well known. We consider here the example of $alpha$ Ophiuchi, for which dozens of oscillation frequencies have been measured. We model the star using the two-dimensional structure code ESTER, and we compute both adiabatic and non-adiabatic oscillations using the TOP code. Both calculations yield very complex spectra, and we used various diagnostic tools to try and identify the observed pulsations. While we have not reached a satisfactory mode-to-mode identification, this paper presents promising early results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا