ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

67   0   0.0 ( 0 )
 نشر من قبل David Pappas
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone we are able to generate parametric amplification using three-wave mixing. The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. Compared to similarly constructed four-wave mixing amplifiers, these devices operate with the RF pump at $sim$20 dB lower power and at frequencies far from the signal. This will permit easier integration into large scale qubit and detector applications.

قيم البحث

اقرأ أيضاً

We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot-noise tunnel junction (SNTJ), approaches the quantum limit. Biased with a d c current, the KIT operates in a three-wave mixing fashion, thereby reducing by several orders of magnitude the power of the microwave pump tone and associated parasitic heating compared to conventional four-wave mixing KIT devices. It consists of a 50 Ohms artificial transmission line whose dispersion allows for a controlled amplification bandwidth. We measure $16.5^{+1}_{-1.3}$ dB of gain across a 2 GHz bandwidth with an input 1 dB compression power of -63 dBm, in qualitative agreement with theory. Using a theoretical framework that accounts for the SNTJ-generated noise entering both the signal and idler ports of the KIT, we measure the system-added noise of an amplification chain that integrates the KIT as the first amplifier. This system-added noise, $3.1pm0.6$ quanta (equivalent to $0.66pm0.15$ K) between 3.5 and 5.5 GHz, is the one that a device replacing the SNTJ in that chain would see. This KIT is therefore suitable to read large arrays of microwave kinetic inductance detectors and promising for multiplexed superconducting qubit readout.
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamateria l band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain vs. signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied DC bias, and four-wave mixing (4WM), without DC. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with DC. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC transmission line (TWPA).
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance while allowing for signific ant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted $lambda/4$ resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12,dB across a 4,GHz span, along with an average saturation power of -92,dBm with noise approaching the quantum limit.
We describe a kinetic inductance traveling-wave (KIT) amplifier suitable for superconducting quantum information measurements and characterize its wideband scattering and noise properties. We use mechanical microwave switches to calibrate the four am plifier scattering parameters up to the device input and output connectors at the dilution refrigerator base temperature and a tunable temperature load to characterize the amplifier noise. Finally, we demonstrate the high fidelity simultaneous dispersive readout of two superconducting transmon qubits. The KIT amplifier provides low-noise amplification of both readout tones with readout fidelities of 83% and 89% and negligible effect on qubit lifetime and coherence.
Superconducting parametric amplifiers have great promise for quantum-limited readout of superconducting qubits and detectors. Until recently, most superconducting parametric amplifiers had been based on resonant structures, limiting their bandwidth a nd dynamic range. Broadband traveling-wave parametric amplifiers based both on the nonlinear kinetic inductance of superconducting thin films and on Josephson junctions are in development. By modifying the dispersion property of the amplifier circuit, referred to as dispersion engineering, the gain can be greatly enhanced and the size can be reduced. We present two theoretical frameworks for analyzing and understanding such parametric amplifiers: (1) generalized coupled-mode equations and (2) a finite difference time domain (FDTD) model combined with a small signal analysis. We show how these analytical and numerical tools may be used to understand device performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا