ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic Inductance Traveling Wave Amplifiers For Multiplexed Qubit Readout

94   0   0.0 ( 0 )
 نشر من قبل Leonardo Ranzani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a kinetic inductance traveling-wave (KIT) amplifier suitable for superconducting quantum information measurements and characterize its wideband scattering and noise properties. We use mechanical microwave switches to calibrate the four amplifier scattering parameters up to the device input and output connectors at the dilution refrigerator base temperature and a tunable temperature load to characterize the amplifier noise. Finally, we demonstrate the high fidelity simultaneous dispersive readout of two superconducting transmon qubits. The KIT amplifier provides low-noise amplification of both readout tones with readout fidelities of 83% and 89% and negligible effect on qubit lifetime and coherence.

قيم البحث

اقرأ أيضاً

Achieving individual qubit readout is a major challenge in the development of scalable superconducting quantum processors. We have implemented the multiplexed readout of a four transmon qubit circuit using non-linear resonators operated as Josephson bifurcation amplifiers. We demonstrate the simultaneous measurement of Rabi oscillations of the four transmons. We find that multiplexed Josephson bifurcation is a high-fidelity readout method, the scalability of which is not limited by the need of a large bandwidth nearly quantum-limited amplifier as is the case with linear readout resonators.
We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot-noise tunnel junction (SNTJ), approaches the quantum limit. Biased with a d c current, the KIT operates in a three-wave mixing fashion, thereby reducing by several orders of magnitude the power of the microwave pump tone and associated parasitic heating compared to conventional four-wave mixing KIT devices. It consists of a 50 Ohms artificial transmission line whose dispersion allows for a controlled amplification bandwidth. We measure $16.5^{+1}_{-1.3}$ dB of gain across a 2 GHz bandwidth with an input 1 dB compression power of -63 dBm, in qualitative agreement with theory. Using a theoretical framework that accounts for the SNTJ-generated noise entering both the signal and idler ports of the KIT, we measure the system-added noise of an amplification chain that integrates the KIT as the first amplifier. This system-added noise, $3.1pm0.6$ quanta (equivalent to $0.66pm0.15$ K) between 3.5 and 5.5 GHz, is the one that a device replacing the SNTJ in that chain would see. This KIT is therefore suitable to read large arrays of microwave kinetic inductance detectors and promising for multiplexed superconducting qubit readout.
Microwave Kinetic Inductance Detectors (MKID) are a promising solution for spaceborne mm-wave astronomy. To optimize their design and make them insensitive to the ballistic phonons created by cosmic-ray interactions in the substrate, the phonon propa gation in silicon must be studied. A dedicated fast readout electronics, using channelized Digital Down Conversion for monitoring up to 12 MKIDs over a 100MHz bandwidth was developed. Thanks to the fast ADC sampling and steep digital filtering, In-phase and Quadrature samples, having a high dynamic range, are provided at ~2 Msps. This paper describes the technical solution chosen and the results obtained.
We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone we are able to generate parametric amplification using three-wave mixing. The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. Compared to similarly constructed four-wave mixing amplifiers, these devices operate with the RF pump at $sim$20 dB lower power and at frequencies far from the signal. This will permit easier integration into large scale qubit and detector applications.
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamateria l band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain vs. signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied DC bias, and four-wave mixing (4WM), without DC. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with DC. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC transmission line (TWPA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا