ترغب بنشر مسار تعليمي؟ اضغط هنا

Coalescence of spectral singularities and phase diagrams for one-dimensional PT symmetric photonic crystals

121   0   0.0 ( 0 )
 نشر من قبل Kun Ding
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-Hermitian systems with parity-time (PT) symmetric complex potentials can exhibit a phase transition when the degree of non-Hermiticity is increased. Two eigenstates coalesce at a transition point, which is known as the exceptional point (EP) for a discrete spectrum and spectral singularity for a continuous spectrum. The existence of an EP is known to give rise to a great variety of novel behaviors in various fields of physics. In this work, we study the complex band structures of one-dimensional photonic crystals with PT symmetric complex potentials by setting up a Hamiltonian using the Bloch states of the photonic crystal without loss or gain as a basis. As a function of the degree of non-Hermiticity, two types of PT symmetry transitions are found. One is that a PT-broken phase can re-enter into a PT-exact phase at a higher degree of non-Hermiticity. The other is that two spectral singularities, one originating from the Brillouin zone center and the other from the Brillouin zone boundary, can coalesce at some k-point in the interior of the Brillouin zone and create a singularity of higher order. Furthermore, we can induce a band inversion by tuning the filling ratio of the photonic crystal, and we find that the geometric phases of the bands before and after the inversion are independent of the amount of non-Hermiticity as long as the PT-exact phase is not broken. The standard concept of topological transition can hence be extended to non-Hermitian systems.



قيم البحث

اقرأ أيضاً

We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu ral duty cycle, DC = D/L. In the case of the self-defocusing (SDF) intrinsic nonlinearity in the channels, one can predict new effects caused by competition between the linear trapping potential and the effective nonlinear repulsive one. Several species of solitons are found in the first two finite bandgaps of the SDF model, as well as a family of fundamental solitons in the semi-infinite gap of the system with the self-focusing nonlinearity. At moderate values of DC (such as 0.50), both fundamental and higher-order solitons populating the second bandgap of the SDF model suffer destabilization with the increase of the total power. Passing the destabilization point, the solitons assume a flat-top shape, while the shape of unstable solitons gets inverted, with local maxima appearing in empty layers. In the model with narrow channels (around DC =0.25), fundamental and higher-order solitons exist only in the first finite bandgap, where they are stable, despite the fact that they also feature the inverted shape.
We study the spectral and scattering theory of light transmission in a system consisting of two asymptotically periodic waveguides, also known as one-dimensional photonic crystals, coupled by a junction. Using analyticity techniques and commutator me thods in a two-Hilbert spaces setting, we determine the nature of the spectrum and prove the existence and completeness of the wave operators of the system.
Parity-time (PT) symmetry has attracted a lot of attention since the concept of pseudo-Hermitian dynamics of open quantum systems was first demonstrated two decades ago. Contrary to their Hermitian counterparts, non-conservative environments a priori do not show real energy eigenvalues and unitary evolution. However, if PT-symmetry requirements are satisfied, even dissipative systems can exhibit real energy eigenvalues, thus ensuring energy conservation in the temporal average. In optics, PT-symmetry can be readily introduced by incorporating, in a balanced way, regions having optical gain and loss. However, all optical realizations have been restricted so far to a single transverse dimension (1D) such as optical waveguide arrays. In many cases, only losses were modulated relying on a scaling argument being valid for linear systems only. Both restrictions crucially limit potential applications. Here, we present an experimental platform for investigating the interplay of PT-symmetry and nonlinearity in two dimensions (2D) and observe nonlinear localization and soliton formation. Contrary to the typical dissipative solitons, we find a one-parametric family of solitons which exhibit properties similar to its conservative counterpart. In the limit of high optical power, the solitons collapse on a discrete network and give rise to an amplified, self-accelerating field.
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d imensional lines of exceptional points. Here, we substantially expand the space of exceptional systems by designing two-dimensional surfaces of exceptional points, and find that symmetries are a key element to protect such exceptional surfaces. We construct them using symmetry-preserving non-Hermitian deformations of topological nodal lines, and analyze the associated symmetry, topology, and physical consequences. As a potential realization, we simulate a parity-time-symmetric 3D photonic crystal and indeed find the emergence of exceptional surfaces. Our work paves the way for future explorations of systems of exceptional points in higher dimensions.
Real photon pairs can be created in a dynamic cavity with periodically modulated refractive index of the constituent media or oscillating boundaries. This effect is called Dynamic Casimir effect (DCE), which represents one of the most amazing predict ions of quantum field theory. Here, we investigate DCE in a dynamic one-dimensional photonic crystal system with both temporal and spatial modulation of the refractive index profile. Such a system can resonantly generate photons at driving frequencies equal to even or odd integer times of that of the fundamental cavity mode governed by the symmetry of the spatial modulation. We further observe interesting spectral and scaling behaviors for photons excited at the band edge. Our discovery introduces a new degree of freedom to enhance the efficiency of DCE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا