ﻻ يوجد ملخص باللغة العربية
Parity-time (PT) symmetry has attracted a lot of attention since the concept of pseudo-Hermitian dynamics of open quantum systems was first demonstrated two decades ago. Contrary to their Hermitian counterparts, non-conservative environments a priori do not show real energy eigenvalues and unitary evolution. However, if PT-symmetry requirements are satisfied, even dissipative systems can exhibit real energy eigenvalues, thus ensuring energy conservation in the temporal average. In optics, PT-symmetry can be readily introduced by incorporating, in a balanced way, regions having optical gain and loss. However, all optical realizations have been restricted so far to a single transverse dimension (1D) such as optical waveguide arrays. In many cases, only losses were modulated relying on a scaling argument being valid for linear systems only. Both restrictions crucially limit potential applications. Here, we present an experimental platform for investigating the interplay of PT-symmetry and nonlinearity in two dimensions (2D) and observe nonlinear localization and soliton formation. Contrary to the typical dissipative solitons, we find a one-parametric family of solitons which exhibit properties similar to its conservative counterpart. In the limit of high optical power, the solitons collapse on a discrete network and give rise to an amplified, self-accelerating field.
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states.
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the sol
Families of analytical solutions are found for symmetric and antisymmetric solitons in the dual-core system with the Kerr nonlinearity and PT-balanced gain and loss. The crucial issue is stability of the solitons. A stability region is obtained in an
Exceptional points in non-Hermitian systems have recently been shown to possess nontrivial topological properties, and to give rise to many exotic physical phenomena. However, most studies thus far have focused on isolated exceptional points or one-d
We construct dark solitons in the recently introduced model of the nonlinear dual-core coupler with the mutually balanced gain and loss applied to the two cores, which is a realization of parity-time symmetry in nonlinear optics. The main issue is st