ﻻ يوجد ملخص باللغة العربية
Time-domain astronomy (TDA) is facing a paradigm shift caused by the exponential growth of the sample size, data complexity and data generation rates of new astronomical sky surveys. For example, the Large Synoptic Survey Telescope (LSST), which will begin operations in northern Chile in 2022, will generate a nearly 150 Petabyte imaging dataset of the southern hemisphere sky. The LSST will stream data at rates of 2 Terabytes per hour, effectively capturing an unprecedented movie of the sky. The LSST is expected not only to improve our understanding of time-varying astrophysical objects, but also to reveal a plethora of yet unknown faint and fast-varying phenomena. To cope with a change of paradigm to data-driven astronomy, the fields of astroinformatics and astrostatistics have been created recently. The new data-oriented paradigms for astronomy combine statistics, data mining, knowledge discovery, machine learning and computational intelligence, in order to provide the automated and robust methods needed for the rapid detection and classification of known astrophysical objects as well as the unsupervised characterization of novel phenomena. In this article we present an overview of machine learning and computational intelligence applications to TDA. Future big data challenges and new lines of research in TDA, focusing on the LSST, are identified and discussed from the viewpoint of computational intelligence/machine learning. Interdisciplinary collaboration will be required to cope with the challenges posed by the deluge of astronomical data coming from the LSST.
Time series data of celestial objects are commonly used to study valuable and unexpected objects such as extrasolar planets and supernova in time domain astronomy. Due to the rapid growth of data volume, traditional manual methods are becoming extrem
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large datasets. Gaussian Processes are a popular class of models used for this purpose but, since th
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will b
Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the qu
This paper describes the VARTOOLS program, which is an open-source command-line utility, written in C, for analyzing astronomical time-series data, especially light curves. The program provides a general-purpose set of tools for processing light curv