ﻻ يوجد ملخص باللغة العربية
We study the dynamic pricing problem faced by a monopolistic retailer who sells a storable product to forward-looking consumers. In this framework, the two major pricing policies (or mechanisms) studied in the literature are the preannounced (commitment) pricing policy and the contingent (threat or history dependent) pricing policy. We analyse and compare these pricing policies in the setting where the good can be purchased along a finite time horizon in indivisible atomic quantities. First, we show that, given linear storage costs, the retailer can compute an optimal preannounced pricing policy in polynomial time by solving a dynamic program. Moreover, under such a policy, we show that consumers do not need to store units in order to anticipate price rises. Second, under the contingent pricing policy rather than the preannounced pricing mechanism, (i) prices could be lower, (ii) retailer revenues could be higher, and (iii) consumer surplus could be higher. This result is surprising, in that these three facts are in complete contrast to the case of a retailer selling divisible storable goods Dudine et al. (2006). Third, we quantify exactly how much more profitable a contingent policy could be with respect to a preannounced policy. Specifically, for a market with $N$ consumers, a contingent policy can produce a multiplicative factor of $Omega(log N)$ more revenues than a preannounced policy, and this bound is tight.
We consider a price competition between two sellers of perfect-complement goods. Each seller posts a price for the good it sells, but the demand is determined according to the sum of prices. This is a classic model by Cournot (1838), who showed that
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our m
Social goods are goods that grant value not only to their owners but also to the owners surroundings, be it their families, friends or office mates. The benefit a non-owner derives from the good is affected by many factors, including the type of the
Competitive equilibrium from equal incomes (CEEI) is a classic solution to the problem of fair and efficient allocation of goods [Foley67, Varian74]. Every agent receives an equal budget of artificial currency with which to purchase goods, and prices
We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In this model, we have n agents and m available public goods, and we want to select $k leq m$ goods in a fair and efficient manner. We first establish f