ﻻ يوجد ملخص باللغة العربية
We study fair allocation of indivisible public goods subject to cardinality (budget) constraints. In this model, we have n agents and m available public goods, and we want to select $k leq m$ goods in a fair and efficient manner. We first establish fundamental connections between the models of private goods, public goods, and public decision making by presenting polynomial-time reductions for the popular solution concepts of maximum Nash welfare (MNW) and leximin. These mechanisms are known to provide remarkable fairness and efficiency guarantees in private goods and public decision making settings. We show that they retain these desirable properties even in the public goods case. We prove that MNW allocations provide fairness guarantees of Proportionality up to one good (Prop1), $1/n$ approximation to Round Robin Share (RRS), and the efficiency guarantee of Pareto Optimality (PO). Further, we show that the problems of finding MNW or leximin-optimal allocations are NP-hard, even in the case of constantly many agents, or binary valuations. This is in sharp contrast to the private goods setting that admits polynomial-time algorithms under binary valuations. We also design pseudo-polynomial time algorithms for computing an exact MNW or leximin-optimal allocation for the cases of (i) constantly many agents, and (ii) constantly many goods with additive valuations. We also present an O(n)-factor approximation algorithm for MNW which also satisfies RRS, Prop1, and 1/2-Prop.
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our m
In this paper, we consider how to fairly allocate $m$ indivisible chores to a set of $n$ (asymmetric) agents. As exact fairness cannot be guaranteed, motivated by the extensive study of EF1, EFX and PROP1 allocations, we propose and study {em proport
In this paper we study how to fairly allocate a set of m indivisible chores to a group of n agents, each of which has a general additive cost function on the items. Since envy-free (EF) allocation is not guaranteed to exist, we consider the notion of
Competitive equilibrium from equal incomes (CEEI) is a classic solution to the problem of fair and efficient allocation of goods [Foley67, Varian74]. Every agent receives an equal budget of artificial currency with which to purchase goods, and prices
We consider the problem of fair allocation of indivisible items among $n$ agents with additive valuations, when agents have equal entitlements to the goods, and there are no transfers. Best-of-Both-Worlds (BoBW) fairness mechanisms aim to give all ag