ﻻ يوجد ملخص باللغة العربية
We study the optimal control of storage which is used for both arbitrage and buffering against unexpected events, with particular applications to the control of energy systems in a stochastic and typically time-heterogeneous environment. Our philosophy is that of viewing the problem as being formally one of stochastic dynamic programming, but of using coupling arguments to provide good estimates of the costs of failing to provide necessary levels of buffering. The problem of control then reduces to that of the solution, dynamically in time, of a deterministic optimisation problem which must be periodically re-solved. We show that the optimal control then proceeds locally in time, in the sense that the optimal decision at each time $t$ depends only on a knowledge of the future costs and stochastic evolution of the system for a time horizon which typically extends only a little way beyond $t$. The approach is thus both computationally tractable and suitable for the management of systems over indefinitely extended periods of time. We develop also the associated strong Lagrangian theory (which may be used to assist in the optimal dimensioning of storage), and we provide characterisations of optimal control policies. We give examples based on Great Britain electricity price data.
Large scale electricity storage is set to play an increasingly important role in the management of future energy networks. A major aspect of the economics of such projects is captured in arbitrage, i.e. buying electricity when it is cheap and selling
Reduced installation and operating costs give energy storage systems an opportunity to participate actively and profitably in electricity markets. In addition to providing ancillary services, energy storage systems can also arbitrage temporal price d
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to mee
Increasing wind turbines (WT) penetration and low carbon demand can potentially lead to two different flow peaks, generation and load, within distribution networks. This will not only constrain WT penetration but also pose serious threats to network
Energy storage is expected to play an increasingly important role in mitigating variations that come along with the growing penetration of renewable energy. In this paper, we study the optimal bidding of an energy storage unit in a semi-centralized m