ﻻ يوجد ملخص باللغة العربية
Increasing wind turbines (WT) penetration and low carbon demand can potentially lead to two different flow peaks, generation and load, within distribution networks. This will not only constrain WT penetration but also pose serious threats to network reliability. This paper proposes energy storage (ES) to reduce system congestion cost caused by the two peaks by sending cost-reflective economic signals to affect ES operation in responding to network conditions. Firstly, a new charging and discharging (C/D) strategy based on Binary Search Method is designed for ES, which responds to system congestion cost over time. Then, a novel pricing method, based on Location Marginal Pricing, is designed for ES. The pricing model is derived by evaluating ES impact on the network power flows and congestion from the loss and congestion components in Location Marginal Pricing. The impact is then converted into an hourly economic signal to reflect ES operation. The proposed ES C/D strategy and pricing methods are validated on a real local Grid Supply Point area. Results show that the proposed Location Marginal Pricing-based pricing is efficient to capture the feature of ES and provide signals for affecting its operation. This work can further increase network flexibility and the capability of networks to accommodate increasing WT penetration.
With the rapid growth in renewable energy and battery storage technologies, there exists significant opportunity to improve energy efficiency and reduce costs through optimization. However, optimization algorithms must take into account the underlyin
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to mee
This work considers energy management in a grid-connected microgrid which consists of multiple conventional generators (CGs), renewable generators (RGs) and energy storage systems (ESSs). A two-stage optimization approach is presented to schedule the
Large scale electricity storage is set to play an increasingly important role in the management of future energy networks. A major aspect of the economics of such projects is captured in arbitrage, i.e. buying electricity when it is cheap and selling
We study the optimal control of storage which is used for both arbitrage and buffering against unexpected events, with particular applications to the control of energy systems in a stochastic and typically time-heterogeneous environment. Our philosop