ﻻ يوجد ملخص باللغة العربية
Energy storage is expected to play an increasingly important role in mitigating variations that come along with the growing penetration of renewable energy. In this paper, we study the optimal bidding of an energy storage unit in a semi-centralized market. The energy storage unit offers its available storage capacity and maximum charging/ discharging rate to the operator; then the operator clears the real-time market by minimizing the total cost. The energy storage unit is paid/ charged at locational marginal price (LMP). The problem casts down to a bilevel optimization problem with a mixed-integer lower-level. An improved surrogate-based method with the combined spatial-temporal entropy term is developed to solve this problem. Numerical examples demonstrate the scalability, efficiency, and accuracy of the proposed method.
This paper presents a framework for deriving the storage capacity that an electricity system requires in order to satisfy a chosen risk appetite. The framework takes as inputs user-defined event categories, parameterised by peak power-not-served, acc
French regulation allows consumers in low-voltage networks to form collectives to produce, share, and consume local energy under the collective self-consumption framework. A natural consequence of collectively-owned generation projects is the need to
This paper describes an optimization framework to control a distributed parameter system (DPS) using a team of mobile actuators. The framework simultaneously seeks optimal control of the DPS and optimal guidance of the mobile actuators such that a co
It is likely that electricity storage will play a significant role in the balancing of future energy systems. A major challenge is then that of how to assess the contribution of storage to capacity adequacy, i.e. to the ability of such systems to mee
We study a general class of entropy-regularized multi-variate LQG mean field games (MFGs) in continuous time with $K$ distinct sub-population of agents. We extend the notion of actions to action distributions (exploratory actions), and explicitly der