ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear flavour violation and anomalies in B physics

105   0   0.0 ( 0 )
 نشر من قبل Sophie Renner Ms
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose renormalizable models of new physics that can explain various anomalies observed in decays of B-mesons to electron and muon pairs. The new physics states couple to linear combinations of Standard Model fermions, yielding a pattern of flavour violation that gives a consistent fit to the gamut of flavour data. Accidental symmetries prevent contributions to baryon- and lepton-number-violating processes, as well as enforcing a loop suppression of new physics contributions to flavour violating processes. Data require that the new flavour-breaking couplings are largely aligned with the Yukawa couplings of the SM and so we also explore patterns of flavour symmetry breaking giving rise to this structure.

قيم البحث

اقرأ أيضاً

66 - Andreas Crivellin 2016
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m easurement of $htomutau$ with a significance of $2.4,sigma$. Furthermore, BELLE, BABAR and LHCb founds hints for the violation of flavour universality in $Bto D^{(*)}tau u$. In addition, there is the long-standing discrepancy in the anomalous magnetic moment of the muon. Interestingly, all these anomalies are related to muons and taus, while the corresponding electron channels seem to be SM like. This suggests that these deviations from the SM might be correlated and we briefly review some selected models providing simultaneous explanations.
89 - Andrzej J. Buras 2005
After listing basic properties of the Standard Model (SM) that play the crucial role in the field of flavour and CP violation, we discuss the following topics: 1) CKM matrix and the unitarity triangle. 2) Theoretical framework in a non-technical mann er, classifying various extentions of the SM. 3) Particle-Antiparticle mixing and various types of CP violation. 4) Standard analysis of the unitarity triangle. 5) Strategies for the determination of the angles alpha, beta and gamma in non-leptonic B decays. 6) The rare decays K^+ -> pi^+ nu bar nu and K_L -> pi^0 nu bar nu 7) Models with minimal flavour violation (MFV). 8) Models with new complex phases, addressing in particular possible signals of new physics in the B -> pi K data and their implications for rare K and B decays. A personal shopping list for the rest of this decade closes these lectures.
Motivated by an explanation of the $R_{K^{(*)}}$ anomalies, we propose a Standard Model extension via two scalar SU(2)$_L$ triplet leptoquarks and three generations of triplet Majorana fermions. The gauge group is reinforced by a $Z_2$ symmetry, ensu ring the stability of the lightest $Z_2$-odd particle, which is a potentially viable dark matter candidate. Neutrino mass generation occurs radiatively (at the three-loop level), and leads to important constraints on the leptoquark couplings to leptons. We consider very generic textures for the flavour structure of the $h_1$ leptoquark Yukawa couplings, identifying classes of textures which succeed in saturating the $R_{K^{(*)}}$ anomalies. We subsequently carry a comprehensive analysis of the models contributions to numerous high-intensity observables such as meson oscillations and decays, as well as charged lepton flavour violating processes, which put severe constraints on the flavour structure of these leptoquark extensions. Our findings suggest that the most constraining observables are $K^+ to pi^+ u bar u$ decays, and charged lepton flavour violating $mu -e$ conversion in nuclei (among others). Nevertheless, for several classes of flavour textures and for wide mass regimes of the new mediators (within collider reach), this Standard Model extension successfully addresses neutrino mass generation, explains the current $R_{K^{(*)}}$ tensions, and offers a viable dark matter candidate.
76 - A. Hicheur 2019
The direct searches for Beyond Standard Model (BSM) particles have been constraining their mass scale to the extent where it is now becoming consensual that such particles are likely to be above the energy reach of the LHC. Meanwhile, the studies of indirect probes of BSM physics, with all their diversity, have been progressing both in accurracy and in setting up observables with reduced theoretical uncertainties. The observation of flavour anomalies in $b$ hadron decays represents an important part of the program of indirect detection of BSM physics. Several benchmark analyses involving leptonic or semileptonic decays are presented, with an emphasis on intriguing patterns which are systematic in their trend, though not individually significant yet.
We assume that the quark-flavor coefficients matrix of the semileptonic operators addressing the neutral-current B-meson anomalies has rank-one, i.e. it can be described by a single vector in quark-flavor space. By correlating the observed anomalies to other flavor and high-$p_T$ observables, we constrain its possible directions and we show that a large region of the parameter space of this framework will be explored by flavor data from the NA62, KOTO, LHCb and Belle II experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا