ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavour Physics and CP Violation

90   0   0.0 ( 0 )
 نشر من قبل Stefan Recksiegel
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English
 تأليف Andrzej J. Buras




اسأل ChatGPT حول البحث

After listing basic properties of the Standard Model (SM) that play the crucial role in the field of flavour and CP violation, we discuss the following topics: 1) CKM matrix and the unitarity triangle. 2) Theoretical framework in a non-technical manner, classifying various extentions of the SM. 3) Particle-Antiparticle mixing and various types of CP violation. 4) Standard analysis of the unitarity triangle. 5) Strategies for the determination of the angles alpha, beta and gamma in non-leptonic B decays. 6) The rare decays K^+ -> pi^+ nu bar nu and K_L -> pi^0 nu bar nu 7) Models with minimal flavour violation (MFV). 8) Models with new complex phases, addressing in particular possible signals of new physics in the B -> pi K data and their implications for rare K and B decays. A personal shopping list for the rest of this decade closes these lectures.

قيم البحث

اقرأ أيضاً

We present the invited lectures given at the Third IDPASC School which took place in Santiago de Compostela in January 2013. The students attending the school had very different backgrounds, some of them were doing their Ph.D. in experimental particl e physics, others in theory. As a result, and in order to make the lectures useful for most of the students, we focused on basic topics of broad interest, avoiding the more technical aspects of Flavour Physics and CP Violation. We make a brief review of the Standard Model, paying special attention to the generation of fermion masses and mixing, as well as to CP violation. We describe some of the simplest extensions of the SM, emphasising novel flavour aspects which arise in their framework.
141 - Greig A. Cowan 2017
Measurements of $CP$-violating observables in $B$ meson decays can be used to determine the angles of the Unitarity Triangle and hence probe for manifestations of New Physics beyond the Cabibbo-Kobayashi-Maskawa Standard Model paradigm. Of particular interest are precise measurements of the angles $gamma$ and $beta$. Also of great importance are studies of $CP$-violation involving $B_s^0$ mesons, in particular the phase $phi_s$, which is a golden observable in flavour physics at the LHC. Complementary to these studies is the continuing search for direct and indirect $CP$-violation in the charm system, where the experimental precision is now at the $10^{-3}$ level. I will present new and recent results in these topics, and in $CP$-violation searches in baryon decays, with specific emphasis on the measurement programme at the LHC.
We propose renormalizable models of new physics that can explain various anomalies observed in decays of B-mesons to electron and muon pairs. The new physics states couple to linear combinations of Standard Model fermions, yielding a pattern of flavo ur violation that gives a consistent fit to the gamut of flavour data. Accidental symmetries prevent contributions to baryon- and lepton-number-violating processes, as well as enforcing a loop suppression of new physics contributions to flavour violating processes. Data require that the new flavour-breaking couplings are largely aligned with the Yukawa couplings of the SM and so we also explore patterns of flavour symmetry breaking giving rise to this structure.
339 - Ana M. Teixeira 2016
If observed, charged lepton flavour violation is a clear sign of new physics - beyond the Standard Model minimally extended to accommodate neutrino oscillation data. After a brief review of several charged lepton flavour violation observables and the ir current experimental status, we consider distinct extensions of the Standard Model which could potentially give rise to observable signals, focusing on the case of models in which the mechanism of neutrino mass generation is the common source of neutral and charged lepton flavour violation.
209 - D. Atwood , A. Soni 1996
Top quark is extremely sensitive to non-standard CP violating phases. General strategies for exposing different types of phases at the NLC are outlined. SUSY phase(s) cause PRA in $tto Wb$. The transverse polarization of the $tau$ in the reaction $tt o btau u$ is extremely sensitive to a phase from the charged Higgs sector. Phase(s) from the neutral Higgs sector cause appreciable dipole moment effects and lead to sizable asymmetries in $e^+e^-to tbar tH^0$ and $e^+e^-to tbar t u_ebar u_e$.}]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا