ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconciling $B$-decay anomalies with neutrino masses, dark matter and constraints from flavour violation

201   0   0.0 ( 0 )
 نشر من قبل Chandan Hati
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by an explanation of the $R_{K^{(*)}}$ anomalies, we propose a Standard Model extension via two scalar SU(2)$_L$ triplet leptoquarks and three generations of triplet Majorana fermions. The gauge group is reinforced by a $Z_2$ symmetry, ensuring the stability of the lightest $Z_2$-odd particle, which is a potentially viable dark matter candidate. Neutrino mass generation occurs radiatively (at the three-loop level), and leads to important constraints on the leptoquark couplings to leptons. We consider very generic textures for the flavour structure of the $h_1$ leptoquark Yukawa couplings, identifying classes of textures which succeed in saturating the $R_{K^{(*)}}$ anomalies. We subsequently carry a comprehensive analysis of the models contributions to numerous high-intensity observables such as meson oscillations and decays, as well as charged lepton flavour violating processes, which put severe constraints on the flavour structure of these leptoquark extensions. Our findings suggest that the most constraining observables are $K^+ to pi^+ u bar u$ decays, and charged lepton flavour violating $mu -e$ conversion in nuclei (among others). Nevertheless, for several classes of flavour textures and for wide mass regimes of the new mediators (within collider reach), this Standard Model extension successfully addresses neutrino mass generation, explains the current $R_{K^{(*)}}$ tensions, and offers a viable dark matter candidate.

قيم البحث

اقرأ أيضاً

We explore the connection of the leptoquark solution to the recently reported $B$-meson anomalies with a mechanism of neutrino mass generation and a viable dark matter candidate. We consider a model consisting of two scalar leptoquarks and three gene rations of triplet fermions: neutrino masses are radiatively generated at the 3-loop level and, by imposing a discrete $Z_2$ symmetry, one can obtain a viable dark matter candidate. We discuss the constraints on the flavour structure of this model arising from numerous flavour observables. The rare decay $Kto pi^+ ubar u$ and charged lepton flavour violating $mu-e$ conversion in nuclei are found to provide the most stringent constraint on this class of models.
We introduce two scalar leptoquarks, the SU$(2)_L$ isosinglet denoted $phisim(mathbf{3}, mathbf{1}, -1/3)$ and the isotriplet $varphisim(mathbf{3}, mathbf{3}, -1/3)$, to explain observed deviations from the standard model in semi-leptonic $B$-meson d ecays. We explore the regions of parameter space in which this model accommodates the persistent tensions in the decay observables $R_{D^{(*)}}$, $R_{K^{(*)}}$, and angular observables in $bto s mumu$ transitions. Additionally, we exploit the role of these exotics in existing models for one-loop neutrino mass generation derived from $Delta L=2$ effective operators. Introducing the vector-like quark $chi sim (mathbf{3}, mathbf{2}, -5/6)$ necessary for lepton-number violation, we consider the contribution of both leptoquarks to the generation of radiative neutrino mass. We find that constraints permit simultaneously accommodating the flavour anomalies while also explaining the relative smallness of neutrino mass without the need for cancellation between leptoquark contributions. A characteristic prediction of our model is a rate of muon--electron conversion in nuclei fixed by the anomalies in $b to s mu mu$ and neutrino mass; the COMET experiment will thus test and potentially falsify our scenario. The model also predicts signatures that will be tested at the LHC and Belle II.
We propose renormalizable models of new physics that can explain various anomalies observed in decays of B-mesons to electron and muon pairs. The new physics states couple to linear combinations of Standard Model fermions, yielding a pattern of flavo ur violation that gives a consistent fit to the gamut of flavour data. Accidental symmetries prevent contributions to baryon- and lepton-number-violating processes, as well as enforcing a loop suppression of new physics contributions to flavour violating processes. Data require that the new flavour-breaking couplings are largely aligned with the Yukawa couplings of the SM and so we also explore patterns of flavour symmetry breaking giving rise to this structure.
66 - Andreas Crivellin 2016
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m easurement of $htomutau$ with a significance of $2.4,sigma$. Furthermore, BELLE, BABAR and LHCb founds hints for the violation of flavour universality in $Bto D^{(*)}tau u$. In addition, there is the long-standing discrepancy in the anomalous magnetic moment of the muon. Interestingly, all these anomalies are related to muons and taus, while the corresponding electron channels seem to be SM like. This suggests that these deviations from the SM might be correlated and we briefly review some selected models providing simultaneous explanations.
142 - J. Fiaschi , M. Klasen , M. Vargas 2019
Right-handed neutrinos with MeV to GeV mass are very promising candidates for dark matter (DM). Not only can they solve the missing satellite puzzle, the cusp-core problem of inner DM density profiles, and the too-big-to fail problem, {it i.e.} that the unobserved satellites are too big to not have visible stars, but they can also account for the Standard Model (SM) neutrino masses at one loop. We perform a comprehensive study of the right-handed neutrino parameter space and impose the correct observed relic density and SM neutrino mass differences and mixings. We find that the DM masses are in agreement with bounds from big-bang nucleosynthesis, but that these constraints induce sizeable DM couplings to the charged SM leptons. We then point out that previously overlooked limits from current and future lepton flavour violation experiments such as MEG and SINDRUM heavily constrain the allowed parameter space. Since the DM is leptophilic, we also investigate electron recoil as a possible direct detection signal, in particular in the XENON1T experiment. We find that despite the large coupling and low backgrounds, the energy thresholds are still too high and the predicted cross sections too low due to the heavy charged mediator, whose mass is constrained by LEP limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا