ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin measurement using cycling transitions of a two-electron quantum dot molecule

79   0   0.0 ( 0 )
 نشر من قبل Yves Delley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-electron charged self-assembled quantum dot molecules exhibit a decoherence-avoiding singlet-triplet qubit subspace and an efficient spin-photon interface. Here, we demonstrate that the cycling transitions originating from auxiliary ground states in the same system allow for an efficient optical read-out of a singlet-triplet qubit. By implementing a spin-selective state transfer to the auxiliary state using a resonant laser field, we observe an improvement approaching two orders of magnitude in fidelity as compared to spin measurement by light scattering directly from the qubit states. Embedding the quantum dot molecule inside a low quality-factor micro-cavity structure should enable single-shot qubit read-out.

قيم البحث

اقرأ أيضاً

We report a successful measurement of the magnetic field-induced spin singlet-triplet transition in silicon-based coupled dot systems. Our specific experimental scheme incorporates a lateral gate-controlled Coulomb-blockaded structure in Si to meet t he proposed scheme of Loss and DiVincenzo [1], and a non-equilibrium single-electron tunneling technique to probe the fine energy splitting between the spin singlet and triplet, which varies as a function of applying magnetic fields and interdot coupling constant. Our results, exhibiting the singlet-triplet crossing at a magnetic field for various interdot coupling constants, are in agreement with the theoretical predictions, and give the first experimental demonstration of the possible spin swapping occurring in the coupled double dot systems with magnetic field. *Electronic address: [email protected] [1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
Optical spin rotations and cycling transitions for measurement are normally incompatible in quantum dots, presenting a fundamental problem for quantum information applications. Here we show that for a hole spin this problem can be addressed using a t rion with one hole in an excited orbital, where strong spin-orbit interaction tilts the spin. Then, a particular trion triplet forms a double $Lambda$ system, even in a Faraday magnetic field, which we use to demonstrate fast hole spin initialization and coherent population trapping. The lowest trion transitions still strongly preserve spin, thus combining fast optical spin control with cycling transitions for spin readout.
We temporally resolve the resonance fluorescence from an electron spin confined to a single self-assembled quantum dot to measure directly the spins optical initialization and natural relaxation timescales. Our measurements demonstrate that spin init ialization occurs on the order of microseconds in the Faraday configuration when a laser resonantly drives the quantum dot transition. We show that the mechanism mediating the optically induced spin-flip changes from electron-nuclei interaction to hole-mixing interaction at 0.6 Tesla external magnetic field. Spin relaxation measurements result in times on the order of milliseconds and suggest that a $B^{-5}$ magnetic field dependence, due to spin-orbit coupling, is sustained all the way down to 2.2 Tesla.
We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correla ted to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing read-out of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.
We propose a technique to initialize an electron spin in a semiconductor quantum dot with a single short optical pulse. It relies on the fast depletion of the initial spin state followed by a preferential, Purcell-accelerated desexcitation towards th e desired state thanks to a micropillar cavity. We theoretically discuss the limits on initialization rate and fidelity, and derive the pulse area for optimal initialization. We show that spin initialization is possible using a single optical pulse down to a few tens of picoseconds wide.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا