ﻻ يوجد ملخص باللغة العربية
We temporally resolve the resonance fluorescence from an electron spin confined to a single self-assembled quantum dot to measure directly the spins optical initialization and natural relaxation timescales. Our measurements demonstrate that spin initialization occurs on the order of microseconds in the Faraday configuration when a laser resonantly drives the quantum dot transition. We show that the mechanism mediating the optically induced spin-flip changes from electron-nuclei interaction to hole-mixing interaction at 0.6 Tesla external magnetic field. Spin relaxation measurements result in times on the order of milliseconds and suggest that a $B^{-5}$ magnetic field dependence, due to spin-orbit coupling, is sustained all the way down to 2.2 Tesla.
We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-flu
The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the tran
Quantum sensing exploits fundamental features of quantum mechanics and quantum control to realise sensing devices with potential applications in a broad range of scientific fields ranging from basic science to applied technology. The ultimate goal ar
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mech
The interplay of optical driving and hyperfine interaction between an electron confined in a quantum dot and its surrounding nuclear spin environment produces a range of interesting physics such as mode-locking. In this work, we go beyond the ubiquit