ترغب بنشر مسار تعليمي؟ اضغط هنا

Generic failure mechanisms in adhesive bonds

54   0   0.0 ( 0 )
 نشر من قبل Falk Wittel K.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The failure of adhesive bondlines has been studied at the microscopic level via tensile tests. Stable crack propagation could be generated by means of samples with improved geometry, which made in-situ observations possible. The interaction of cracks with adhesive bondlines under various angles to the crack propagation was the focus of this study as well as the respective loading situations for the adhesives UF, PUR, and PVAc, which have distinctly different mechanical behaviors. It is shown how adhesive properties influence the occurrence of certain failure mechanisms and determine their appearance and order of magnitude. With the observed failure mechanisms, it becomes possible to predict the propagation path of a crack through the specimen.

قيم البحث

اقرأ أيضاً

We propose a model to analyze the insurgence of pull-in and wrinkling failures in electroactive thin films. We take in consideration both cases of voltage and charge control, and study the role of prestretch and size of activated regions, which are e ssential in the analysis of realistic applications of EAPs. Based on simple geometrical and material assumptions we deduce an explicit analytical description of these phenomena, allowing a clear physical interpretation. Despite our simplifying assumptions, the comparison with experiments shows a satisfying qualitative and, interestingly, quantitative agreement. In particular our model shows, in accordance with experiments, the existence of different optimal prestretch values, depending on the choice of the actuating parameter of the EAP.
We use a symmetry-motivated approach to analyse neutron pair distribution function data to investigate the mechanism of negative thermal expansion (NTE) in ReO$_3$. This analysis shows that the local structure of ReO$_3$ is dominated by an in-phase o ctahedral tilting mode and that the octahedral units are far less flexible to scissoring type deformations than the octahedra in the related compound ScF$_3$. These results support the idea that structural flexibility is an important factor in NTE materials, allowing the phonon modes that drive a volume contraction of the lattice to occupy a greater volume in reciprocal space. The lack of flexibility in ReO$_3$ restricts the NTE-driving phonons to a smaller region of reciprocal space, limiting the magnitude and temperature range of NTE. In addition, we investigate the thermal expansion properties of the material at high temperature and do not find the reported second NTE region. Finally, we show that the local fluctuations, even at elevated temperatures, respect the symmetry and order parameter direction of the observed $P4/mbm$ high pressure phase of ReO$_3$. The result indicates that the motions associated with rigid unit modes are highly anisotropic in these systems.
227 - D. Sornette 2005
We present a general prediction scheme of failure times based on updating continuously with time the probability for failure of the global system, conditioned on the information revealed on the pre-existing idiosyncratic realization of the system by the damage that has occurred until the present time. Its implementation on a simple prototype system of interacting elements with unknown random lifetimes undergoing irreversible damage until a global rupture occurs shows that the most probable predicted failure time (mode) may evolve non-monotonically with time as information is incorporated in the prediction scheme. In addition, both the mode, its standard deviation and, in fact, the full distribution of predicted failure times exhibit sensitive dependence on the realization of the system, similarly to ``chaos in spinglasses, providing a multi-dimensional dynamical explanation for the broad distribution of failure times observed in many empirical situations.
Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08<x(Ag)<0.28 and 0.08<x(Au)<0.52). High resolution transmission electron microscopy (TEM) showed regular distribution of spherical Au and Ag nanoparticles having very sharp interfaces with the amorphous matrix. Mean particle size determined from X-ray diffraction agreed with direct TEM observation. The silver mean diameter increases more abruptly with metal volume content than that corresponding to gold particles prepared under the same conditions. Two mechanisms of particle growing are observed: nucleation and particle coalescence, their relative significance being different in both granular systems, which yields very different values of the percolation threshold (xc(Ag)~0.28 and xc(Au)~0.52).
We analyze the effect of quenched disorder on spin-1/2 quantum magnets in which magnetic frustration promotes the formation of local singlets. Our results include a theory for 2d valence-bond solids subject to weak bond randomness, as well as extensi ons to stronger disorder regimes where we make connections with quantum spin liquids. We find, on various lattices, that the destruction of a valence-bond solid phase by weak quenched disorder leads inevitably to the nucleation of topological defects carrying spin-1/2 moments. This renormalizes the lattice into a strongly random spin network with interesting low-energy excitations. Similarly when short-ranged valence bonds would be pinned by stronger disorder, we find that this putative glass is unstable to defects that carry spin-1/2 magnetic moments, and whose residual interactions decide the ultimate low energy fate. Motivated by these results we conjecture Lieb-Schultz-Mattis-like restrictions on ground states for disordered magnets with spin-1/2 per statistical unit cell. These conjectures are supported by an argument for 1d spin chains. We apply insights from this study to the phenomenology of YbMgGaO$_4$, a recently discovered triangular lattice spin-1/2 insulator which was proposed to be a quantum spin liquid. We instead explore a description based on the present theory. Experimental signatures, including unusual specific heat, thermal conductivity, and dynamical structure factor, and their behavior in a magnetic field, are predicted from the theory, and compare favorably with existing measurements on YbMgGaO$_4$ and related materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا