ﻻ يوجد ملخص باللغة العربية
We propose a model to analyze the insurgence of pull-in and wrinkling failures in electroactive thin films. We take in consideration both cases of voltage and charge control, and study the role of prestretch and size of activated regions, which are essential in the analysis of realistic applications of EAPs. Based on simple geometrical and material assumptions we deduce an explicit analytical description of these phenomena, allowing a clear physical interpretation. Despite our simplifying assumptions, the comparison with experiments shows a satisfying qualitative and, interestingly, quantitative agreement. In particular our model shows, in accordance with experiments, the existence of different optimal prestretch values, depending on the choice of the actuating parameter of the EAP.
The failure of adhesive bondlines has been studied at the microscopic level via tensile tests. Stable crack propagation could be generated by means of samples with improved geometry, which made in-situ observations possible. The interaction of cracks
The objective of this work is to study the role of shear on the rupture of ultrathin polymer films. To do so, a finite-difference numerical scheme for the resolution of the thin film equation was set up taking into account capillary and van der Waals
Ferroelectric switching in BiFeO$_3$ multiferroic thin films with intrinsic ``stripe-like and ``bubble-like polydomain configurations was studied by piezoresponse force microscopy. Using the local electric field applied by a scanning probe microscope
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange fiel
Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be fou