ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle growing mechanisms in Ag-ZrO2 and Au-ZrO2 granular films obtained by pulsed laser deposition

393   0   0.0 ( 0 )
 نشر من قبل Zorica Konstantinovic
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin films consisting of Ag and Au nanoparticles embedded in amorphous ZrO2 matrix were grown by pulsed laser deposition in a wide range of metal volume concentrations in the dielectric regime (0.08<x(Ag)<0.28 and 0.08<x(Au)<0.52). High resolution transmission electron microscopy (TEM) showed regular distribution of spherical Au and Ag nanoparticles having very sharp interfaces with the amorphous matrix. Mean particle size determined from X-ray diffraction agreed with direct TEM observation. The silver mean diameter increases more abruptly with metal volume content than that corresponding to gold particles prepared under the same conditions. Two mechanisms of particle growing are observed: nucleation and particle coalescence, their relative significance being different in both granular systems, which yields very different values of the percolation threshold (xc(Ag)~0.28 and xc(Au)~0.52).



قيم البحث

اقرأ أيضاً

Micron-thick boron films have been deposited by Pulsed Laser Deposition in vacuum on several substrates at room temperature. The use of high energy pulses (>700 mJ) results in the deposition of smooth coatings with low oxygen uptake even at base pres sures of 10$^{-4}$ - 10$^{-3}$ Pa. A detailed structural analysis, by X-Ray Diffraction and Raman, allowed to assess the amorphous nature of the deposited films as well as to determine the base pressure that prevents boron oxide formation. In addition the crystallization dynamics has been characterized showing that film crystallinity already improves at relatively low temperatures (800 {deg}C). Elastic properties of the boron films have been determined by Brillouin spectroscopy. Finally, micro-hardness tests have been used to explore cohesion and hardness of B films deposited on aluminum, silicon and alumina. The reported deposition strategy allows the growth of reliable boron coatings paving the way for their use in many technology fields.
84 - A. Heinrich , B. Renner , R. Lux 2003
Cu2Ta4O12 (CTaO) thin films were successfully deposited on Si(100) substrates by pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CTaO thin films were strongly affected by substrate temperature, oxygen pr essure and target - substrate distance. In general during deposition of CTaO the formation of a Ta2O5 phase appeared, on which CTaO grew with different orientations. We report on the experimental set-up, details for film deposition and the film properties determined by SEM, EDX and XRD.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex -situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments revealed four important factors to stabilize tetragonal FeS epitaxial thin films: (i) an optimum growth temperature of 300 {deg}C followed by thermal quenching, (ii) an optimum growth rate of ~7 nm/min, (iii) use of a high-purity bulk target, and (iv) use of a single-crystal substrate with small in-plane lattice mismatch (CaF2). Electrical resistivity measurements indicated that none of all the films exhibited superconductivity. Although an electric double-layer transistor structure was fabricated using the tetragonal FeS epitaxial film as a channel layer to achieve high-density carrier doping, no phase transition was observed. Possible reasons for the lack of superconductivity include lattice strain, off-stoichiometry of the film, electrochemical etching by the ionic liquid under gate bias, and surface degradation during device fabrication.
We perform a theoretical study of the magnetism induced in transition metal dioxides ZrO2 and TiO2 by substitution of the cation by a vacancy or an impurity from the groups 1A or 2A of the periodic table, where the impurity is either K or Ca. In the present study both supercell and embedded cluster methods are used. It is demonstrated that the vacancy and the K-impurity leads to a robust induced magnetic moment on the surrounding O-atoms for both the cubic ZrO2 and rutile TiO2 host crystals. On the other hand it is shown that Ca-impurity leads to a non magnetic state. The native O-vacancy does not induce a magnetic moment in the host dioxide crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا