ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly efficient spin-to-charge current conversion at room temperature in strained HgTe surface states

73   0   0.0 ( 0 )
 نشر من قبل Candice Thomas
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. The conversion rates are found to be very high, with inverse Edelstein lengths up to 2.0 +/- 0.5 nm. The influence of the HgTe layer thickness on the conversion efficiency has been studied, as well as the role of a HgCdTe barrier inserted in-between the HgTe and NiFe layers. These measurements, associated to the temperature dependence of the resistivity, allows to ascribe these high conversion rates to the spin momentum locking property of HgTe surface states.

قيم البحث

اقرأ أيضاً

We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) {alpha}-Sn[1-3]. By angle-resolved photoelectron spectroscopy (ARPES) we first confirm that the Dirac cone at the surface of {alpha}-Sn (0 0 1) layers subsists after covering with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into {alpha}-Sn layers induces a lateral charge current that can be ascribed to the Inverse Edelstein Effect[4-5]. Our observation of an Inverse Edelstein Effect length[5-6] much longer than for Rashba interfaces[5-10] demonstrates the potential of the TI for conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of TI for spin to charge conversion and the conditions to reach it.
104 - Yang Li , Shi-jia Yang , Dali Sun 2020
b{eta}-PdBi2 has attracted much attention for its prospective ability to possess simultaneously topological surface and superconducting states due to its unprecedented spin-orbit interaction (SOC). Whereas most works have focused solely on investigat ing its topological surface states, the coupling between spin and charge degrees of freedom in this class of quantum material remains unexplored. Here we first report a study of spin-to-charge conversion in a b{eta}-PdBi2 ultrathin film grown by molecular beam epitaxy, utilizing a spin pumping technique to perform inverse spin Hall effect measurements. We find that the room temperature spin Hall angle of Fe/b{eta}-PdBi2, {theta}_SH=0.037. This value is one order of magnitude larger than that of reported conventional superconductors, and is comparable to that of the best SOC metals and topological insulators. Our results provide an avenue for developing superconductor-based spintronic applications.
Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low symmetry transition metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents. Here, we report the observation of spin-to-charge conversion in MoTe$_2$ flakes, which are stacked in graphene lateral spin valves. We detect two distinct contributions arising from the conversion of two different spin orientations. In addition to the conventional conversion where the spin polarization is orthogonal to the charge current, we also detect a conversion where the spin polarization and the charge current are parallel. Both contributions, which could arise either from bulk spin Hall effect or surface Edelstein effect, show large efficiencies comparable to the best spin Hall metals and topological insulators. Our finding enables the simultaneous conversion of spin currents with any in-plane spin polarization in one single experimental configuration.
Two-dimensional electron gas (2DEG) formed at the interface between SrTiO3 (STO) and LaAlO3 (LAO) insulating layer is supposed to possess strong Rashba spin-orbit coupling. To date, the inverse Edelstein effect (i.e. spin-to-charge conversion) in the 2DEG layer is reported. However, the direct effect of charge-to-spin conversion, an essential ingredient for spintronic devices in a current induced spin-orbit torque scheme, has not been demonstrated yet. Here we show, for the first time, a highly efficient spin generation with the efficiency of ~6.3 in the STO/LAO/CoFeB structure at room temperature by using spin torque ferromagnetic resonance. In addition, we suggest that the spin transmission through the LAO layer at high temperature range is attributed to the inelastic tunneling via localized states in the LAO band gap. Our findings may lead to potential applications in the oxide insulator based spintronic devices.
Since its birth in the 1990s, semiconductor spintronics has suffered from poor compatibility with ferromagnets as sources of spin. While the broken inversion symmetry of some semiconductors may alternatively allow for spin-charge interconversion, its control by electric fields is volatile. Ferroelectric Rashba semiconductors stand as appealing materials unifying semiconductivity, large spin-orbit coupling, and non-volatility endowed by ferroelectricity. However, their potential for spintronics has been little explored. Here, we demonstrate the non-volatile, ferroelectric control of spin-to-charge conversion at room temperature in epitaxial GeTe films. We show that ferroelectric switching by electrical gating is possible in GeTe despite its high carrier density. We reveal a spin-to-charge conversion as effective as in Pt, but whose sign is controlled by the orientation of the ferroelectric polarization. The comparison between theoretical and experimental data suggests that spin Hall effect plays a major role for switchable conversion. These results open a route towards devices combining spin-based logic and memory integrated into a silicon-compatible material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا