ﻻ يوجد ملخص باللغة العربية
The boundary of a fractionalized topological phase can be gapped by condensing a proper set of bosonic quasiparticles. Interestingly, in the presence of a global symmetry, such a boundary can have different symmetry transformation properties. Here we present an explicit example of this kind, in the double semion state with time reversal symmetry. We find two distinct cases where the semionic excitations on the boundary can transform either as time reversal singlets or as time reversal (Kramers) doublets, depending on the coherent phase factor of the Bose condensate. The existence of these two possibilities are demonstrated using both field theory argument and exactly solvable lattice models. Furthermore, we study the domain walls between these two types of gapped boundaries and find that the application of time reversal symmetry tunnels a semion between them.
Recently, the niobium (Nb)-doped topological insulator Bi_2Se_3, in which the finite magnetic moments of the Nb atoms are intercalated in the van der Waals gap between the Bi_2Se_3 layers, has been shown to exhibit both superconductivity with T_c = 3
We study gapped boundaries of Abelian type-I fracton systems in three spatial dimensions. Using the X-cube model as our motivating example, we give a conjecture, with partial proof, of the conditions for a boundary to be gapped. In order to state our
In this work we consider general fermion systems in two spatial dimensions, both with and without charge conservation symmetry, which realize a nontrivial fermionic topological order with only Abelian anyons. We address the question of precisely how
We discuss a strategy to construct gapped boundaries for a large class of symmetry-protected topological phases (SPT phases) beyond group cohomology. This is done by a generalization of the symmetry extension method previously used for cohomological
Indistinguishable particles in two dimensions can be characterized by anyonic quantum statistics more general than those of bosons or fermions. Such anyons emerge as quasiparticles in fractional quantum Hall states and certain frustrated quantum magn