ﻻ يوجد ملخص باللغة العربية
The electronic structure of FeSe thin films grown on SrTiO3 substrate is studied by angle-resolved photoemission spectroscopy (ARPES). We reveal the existence of Dirac cone band dispersions in FeSe thin films thicker than 1 Unit Cell below the nematic transition temperature, whose apex are located -10 meV below Fermi energy. The evolution of Dirac cone electronic structure for FeSe thin films as function of temperature, thickness and cobalt doping is systematically studied. The Dirac cones are found to be coexisted with the nematicity in FeSe, disappear when nematicity is suppressed. Our results provide some indication that the spin degrees of freedom may play some kind of role in the nematicity of FeSe.
CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal syst
Various Fe-vacancy orders have been reported in tetragonal Fe1-xSe single crystals and nanowires/nanosheets, which are similar to those found in alkali metal intercalated A1-xFe2-ySe2 superconductors. Here we report the in-situ angle-resolved photoem
We performed an angle-resolved photoemission spectroscopy study of BaFe2As2, which is the parent compound of the so-called 122 phase of the iron-pnictide high-temperature superconductors. We reveal the existence of a Dirac cone in the electronic stru
Hexagonal FeSe thin films were grown on SrTiO3 substrates and the temperature and thickness dependence of their electronic structures were studied. The hexagonal FeSe is found to be metallic and electron doped, whose Fermi surface consists of six ell
High resolution angle-resolved photoemission measurements have been carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7 K. Combined with theoretical calculations, we have discovered for the first time the ex