ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca0.9La0.1FeAs2

85   0   0.0 ( 0 )
 نشر من قبل Zhengtai Liu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

CaFeAs2 is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principle calculation study of the slightly electron-doped CaFeAs2. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exists around the X but not Y points in the Brillouin zone, breaking the S4 symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs2 would provide us a unique opportunity to realize and explore Majorana fermion physics.



قيم البحث

اقرأ أيضاً

148 - S. Y. Tan , Y. Fang , D. H. Xie 2015
The electronic structure of FeSe thin films grown on SrTiO3 substrate is studied by angle-resolved photoemission spectroscopy (ARPES). We reveal the existence of Dirac cone band dispersions in FeSe thin films thicker than 1 Unit Cell below the nemati c transition temperature, whose apex are located -10 meV below Fermi energy. The evolution of Dirac cone electronic structure for FeSe thin films as function of temperature, thickness and cobalt doping is systematically studied. The Dirac cones are found to be coexisted with the nematicity in FeSe, disappear when nematicity is suppressed. Our results provide some indication that the spin degrees of freedom may play some kind of role in the nematicity of FeSe.
We use inelastic neutron scattering to study the low-energy spin excitations of 112-type iron pnictide Ca$_{0.82}$La$_{0.18}$Fe$_{0.96}$Ni$_{0.04}$As$_{2}$ with bulk superconductivity below $T_c=22$ K. A two-dimensional spin resonance mode is found a round $E=$ 11 meV, where the resonance energy is almost temperature independent and linearly scales with $T_c$ along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any $L$ modulations. Due to the unique monoclinic structure with additional zigzag arsenic chains, the As $4p$ orbitals contribute to a three-dimensional hole pocket around $Gamma$ point and an extra electron pocket at $X$ point. Our results suggest that the energy and momentum distribution of spin resonance does not directly response to the $k_z$ dependence of fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.
132 - Jong Mok Ok , S.-H. Baek , C. Hoch 2017
A subtle balance between competing interactions in strongly correlated systems can be easily tipped by additional interfacial interactions in a heterostructure. This often induces exotic phases with unprecedented properties, as recently exemplified b y high-Tc superconductivity in FeSe monolayer on the nonmagnetic SrTiO3. When the proximity-coupled layer is magnetically active, even richer phase diagrams are expected in iron-based superconductors (FeSCs), which however has not been explored due to the lack of a proper material system. One promising candidate is Sr2VO3FeAs, a naturally-assembled heterostructure of a FeSC and a Mott-insulating vanadium oxide. Here, using high-quality single crystals and high-accuracy 75As and 51V nuclear magnetic resonance (NMR) measurements, we show that a novel electronic phase is emerging in the FeAs layer below T0 ~ 155 K without either static magnetism or a crystal symmetry change, which has never been observed in other FeSCs. We find that frustration of the otherwise dominant Fe stripe and V Neel fluctuations via interfacial coupling induces a charge/orbital order with C4-symmetry in the FeAs layers, while suppressing the Neel antiferromagnetism in the SrVO3 layers. These findings demonstrate that the magnetic proximity coupling is effective to stabilize a hidden order in FeSCs and, more generally, in strongly correlated heterostructures.
Topological insulators/semimetals and unconventional iron-based superconductors have attracted major attentions in condensed matter physics in the past 10 years. However, there is little overlap between these two fields, although the combination of t opological states and superconducting states will produce more exotic topologically superconducting states and Majorana bound states (MBS), a promising candidate for realizing topological quantum computations. With the progress in laser-based spin-resolved and angle-resolved photoemission spectroscopy (ARPES) with very high energy- and momentum-resolution, we directly resolved the topological insulator (TI) phase and topological Dirac semimetal (TDS) phase near Fermi level ($E_F$) in the iron-based superconductor Li(Fe,Co)As. The TI and TDS phases can be separately tuned to $E_F$ by Co doping, allowing a detailed study of different superconducting topological states in the same material. Together with the topological states in Fe(Te,Se), our study shows the ubiquitous coexistence of superconductivity and multiple topological phases in iron-based superconductors, and opens a new age for the study of high-Tc iron-based superconductors and topological superconductivity.
454 - M.Y. Li , Z.T. Liu , W. Zhou 2014
We report a systematic polarization-dependent angle-resolved photoemission spectroscopy study of the three-dimensional electronic structure of the recently discovered 112-type iron-based superconductor Ca1-xLaxFeAs2 (x = 0.1). Besides the commonly re ported three hole-like and two electron-like bands in iron-based superconductors, we resolve one additional hole-like band around the zone center and one more fast-dispersing band near the X point in the vicinity of Fermi level. By tuning the polarization and the energy of incident photons,we are able to identify the specific orbital characters and the kz dependence of all bands. Combining with band calculations, we find As 4pz and 4px (4py) orbitals contribute significantly to the additional three-dimensional hole-like band and the narrow band, respectively. Also, there are considerable hybridization between the As 4p zand Fe 3d orbitals in the additional hole-like band, which suggests the strong coupling between the unique arsenic zigzag bond layers and the FeAs layers therein. Our findings provide a comprehensive picture of the orbital characters of the low-lying band structure of 112-type iron-based superconductors, which can be a starting point for the further understanding of their unconventional superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا