ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy

131   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution angle-resolved photoemission measurements have been carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7 K. Combined with theoretical calculations, we have discovered for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deep below the Fermi level at ~1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deep below the Fermi level provides a unique system to explore for new phenomena and properties and opens a door for finding new topological materials in transition metal chalcogenides.



قيم البحث

اقرأ أيضاً

146 - Xu Liu , Defa Liu , Lin Zhao 2013
The (Ca,R)FeAs2 (R=La,Pr and etc.) superconductors with a signature of superconductivity transition above 40 K possess a new kind of block layers that consist of zig-zag As chains. In this paper, we report the electronic structure of the new (Ca,La)F eAs2 superconductor investigated by both band structure calculations and high resolution angle-resolved photoemission spectroscopy measurements. Band structure calculations indicate that there are four hole-like bands around the zone center $Gamma$(0,0) and two electron-like bands near the zone corner M(pi,pi) in CaFeAs2. In our angle-resolved photoemission measurements on (Ca0.9La0.1})FeAs2, we have observed three hole-like bands around the Gamma point and one electron-like Fermi surface near the M(pi,pi) point. These results provide important information to compare and contrast with the electronic structure of other iron-based compounds in understanding the superconductivity mechanism in the iron-based superconductors.
Super-high resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CaCu2O8+d (Bi2212) superconductors to investigate momentum dependence of electron coupling with collective excitations (modes). Two coexisting energy scales are clearly revealed over a large momentum space for the first time in the superconducting state of an overdoped Bi2212 superconductor. These two energy scales exhibit distinct momentum dependence: one keeps its energy near 78 meV over a large momentum space while the other changes its energy from $sim$40 meV near the antinodal region to $sim$70 meV near the nodal region. These observations provide a new picture on momentum evolution of electron-boson coupling in Bi2212 that electrons are coupled with two sharp modes simultaneously over a large momentum space in the superconducting states. Their unusual momentum dependence poses a challenge to our current understanding of electron-mode-coupling and its role for high temperature superconductivity in cuprate superconductors.
181 - L. X. Yang , B. P. Xie , Y. Zhang 2010
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac e volume, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below structural transition, and shifts smoothly across the spin density wave transition by about 25 meV. Our data suggest the band reconstruction may play a crucial role in the spin density wave transition, and the structural transition is driven by the short range magnetic order. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are verified for the FeAs-terminated surface states in the spin density wave state, which is a reflection of the bulk electronic structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating of drastic reduction of the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the electron-phonon interactions.
Laser-based angle-resolved photoemission measurements with super-high resolution have been carried out on an optimally-doped Bi$_2$Sr$_2$CaCu$_2$O$_8$ high temperature superconductor. New high energy features at $sim$115 meV and $sim$150 meV, besides the prominent $sim$70 meV one, are found to develop in the nodal electron self-energy in the superconducting state. These high energy features, which can not be attributed to electron coupling with single phonon or magnetic resonance mode, point to the existence of a new form of electron coupling in high temperature superconductors.
100 - Q. Yao , Y. P. Du , X. J. Yang 2016
PtBi2 with a layered trigonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high resolution angle-resolved photoemission spectroscopy, we pres ent a systematic study on its bulk and surface electronic structure. Through careful comparison with first-principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real stoichiometry of samples. We find significant electron doping in PtBi2, implying a substantial Bi deficiency induced disorder therein. We discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude quantum-limit-induced linear band dispersion as the cause of the unconventional large linear magnetoresistance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا