ﻻ يوجد ملخص باللغة العربية
Proofs of convergence of adaptive finite element methods for the approximation of eigenvalues and eigenfunctions of linear elliptic problems have been given in a several recent papers. A key step in establishing such results for multiple and clustered eigenvalues was provided by Dai et. al. (2014), who proved convergence and optimality of AFEM for eigenvalues of multiplicity greater than one. There it was shown that a theoretical (non-computable) error estimator for which standard convergence proofs apply is equivalent to a standard computable estimator on sufficiently fine grids. Gallistl (2015) used a similar tool in order to prove that a standard adaptive FEM for controlling eigenvalue clusters for the Laplacian using continuous piecewise linear finite element spaces converges with optimal rate. When considering either higher-order finite element spaces or non-constant diffusion coefficients, however, the arguments of Dai et. al. and Gallistl do not yield equivalence of the practical and theoretical estimators for clustered eigenvalues. In this note we provide this missing key step, thus showing that standard adaptive FEM for clustered eigenvalues employing elements of arbitrary polynomial degree converge with optimal rate. We additionally establish that a key user-defined input parameter in the AFEM, the bulk marking parameter, may be chosen entirely independently of the properties of the target eigenvalue cluster. All of these results assume a fineness condition on the initial mesh in order to ensure that the nonlinearity is sufficiently resolved.
Numerical computation of harmonic forms (typically called harmonic fields in three space dimensions) arises in various areas, including computer graphics and computational electromagnetics. The finite element exterior calculus framework also relies e
In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite elemen
In this paper, we study arbitrary order extended finite element (XFE) methods based on two discontinuous Galerkin (DG) schemes in order to solve elliptic interface problems in two and three dimensions. Optimal error estimates in the piecewise $H^1$-n
We consider a standard elliptic partial differential equation and propose a geometric multigrid algorithm based on Dirichlet-to-Neumann (DtN) maps for hybridized high-order finite element methods. The proposed unified approach is applicable to any lo
We design an adaptive unfitted finite element method on the Cartesian mesh with hanging nodes. We derive an hp-reliable and efficient residual type a posteriori error estimate on K-meshes. A key ingredient is a novel hp-domain inverse estimate which