ﻻ يوجد ملخص باللغة العربية
Functional materials design normally focuses on structurally-ordered systems because disorder is considered detrimental to many important physical properties. Here we challenge this paradigm by showing that particular types of strongly-correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic procrystalline solids that harbour this type of topological disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish a variety of mappings onto known and target materials. Crucially, the strongly-correlated disorder we consider is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-phonon coupling to lattice vibrations characterised by these same periodicities. The principal effect on the phonon spectrum is to bring about dispersion in energy rather than wave-vector, as in the poorly-understood waterfall effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly-correlated topological disorder might allow new and useful functionalities, including independently-optimised thermal and electronic transport behaviour as required for high-performance thermoelectrics.
We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature Tc ~ 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the
Molecular vibrations play a critical role in the charge transport properties of weakly van der Waals bonded organic semiconductors. To understand which specific phonon modes contribute most strongly to the electron-phonon coupling and ensuing thermal
Time and angular resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on
The effect of electron-phonon interactions on optical absorption spectra requires a special treatment in materials with strong electron-hole interactions. We conceptualize these effects as exciton-phonon coupling. Through phonon absorption and emissi
Inelastic scattering experiments are key methods for mapping the full dispersion of fundamental excitations of solids in the ground as well as non-equilibrium states. A quantitative analysis of inelastic scattering in terms of phonon excitations requ