ﻻ يوجد ملخص باللغة العربية
We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature Tc ~ 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A1g phonon mode near 150 cm-1 associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below Tc. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2) at zero temperature is estimated to be ~ 20 meV i.e the ratio is ~ 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430 cm-1 associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below Tc suggesting strong coupling between crystal field excitation and the superconducting quasi-particles. Our observations of two high frequency modes (S9 and S10) evidence the non-degenerate nature of Fe2+ dxz/yz orbitals suggesting the electronic nematicity in these systems.
Inelastic light scattering studies on single crystal of electron-doped Ca(Fe0.95Co0.05)2As2 superconductor, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at TSM ~ 140 K and superconducting transition tem
We use first-principles methods to study doped strong ferroelectrics (taking BaTiO$_3$ as a prototype). Here we find a strong coupling between itinerant electrons and soft polar phonons in doped BaTiO$_3$, contrary to Anderson/Blounts weakly coupled
Topological superconductors (TSCs), with the capability to host Majorana bound states that can lead to non-Abelian statistics and application in quantum computation, have been one of the most intensively studied topics in condensed matter physics rec
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the
Infrared reflectivity spectra of cubic SrMnO$_{3}$ ceramics reveal 18 % stiffening of the lowest-frequency phonon below the antiferromagnetic phase transition occurring at T$_{N}$ = 233 K. Such a large temperature change of the polar phonon frequency