ﻻ يوجد ملخص باللغة العربية
We have observed and spatially resolved a set of seven A-type stars in the nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners on the CHARA Array. At least four of these stars have large rotational velocities ($v sin i$ $gtrsim$ 170 $mathrm{km~s^{-1}}$) and are expected to be oblate. These interferometric measurements, the stars observed photometric energy distributions, and $v sin i$ values are used to computationally construct model oblate stars from which stellar properties (inclination, rotational velocity, and the radius and effective temperature as a function of latitude, etc.) are determined. The results are compared with MESA stellar evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The value of this new technique is that it enables the estimation of the fundamental properties of rapidly rotating stars without the need to fully image the star. It can thus be applied to stars with sizes comparable to the interferometric resolution limit as opposed to those that are several times larger than the limit. Under the assumption of coevality, the spread in ages can be used as a test of both the prescription presented here and the MESA evolutionary code for rapidly rotating stars. With our validated technique, we combine these age estimates and determine the age of the moving group to be 414 $pm$ 23 Myr, which is consistent with, but much more precise than previous estimates.
We present the results of a survey to detect low-mass companions of UMa group members, carried out in 2003-2006 with NACO at the ESO VLT. While many extra-solar planets and planetary candidates have been found in close orbits around stars by the radi
Until now, most members of the Ursa Major (UMa) group of stars have been identified by means of kinematic criteria. However, in many cases kinematic criteria alone are insufficient to ascertain, whether an individual star is really a member of this g
Context. Precise determination of stellar masses is necessary to test the validity of pre-main-sequence (PMS) stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 Msun. To improve such a test, and
The magnetic field is a key ingredient in the recipe of star formation. Over the past two decades, millimeter and submillimeter interferometers have made major strides in unveiling the role of the magnetic field in star formation at progressively sma
We present Multiband Imaging Photometer for Spitzer (MIPS) observations at 24 and 70 microns for 30 stars, and at 160 microns for a subset of 12 stars, in the nearby (~30 pc), young (~12 Myr) Beta Pictoris Moving Group (BPMG). In several cases, the n