ﻻ يوجد ملخص باللغة العربية
The magnetic field is a key ingredient in the recipe of star formation. Over the past two decades, millimeter and submillimeter interferometers have made major strides in unveiling the role of the magnetic field in star formation at progressively smaller spatial scales. From the kiloparsec scale of molecular clouds down to the inner few hundred au immediately surrounding forming stars, the polarization at millimeter and submillimeter wavelengths is dominated by polarized thermal dust emission, where the dust grains are aligned relative to the magnetic field. Interferometric studies have focused on this dust polarization and occasionally on the polarization of spectral-line emission. We review the current state of the field of magnetized star formation in the context of several questions that continue to motivate the studies of high- and low-mass star formation. By aggregating and analyzing the results from individual studies, we come to several conclusions: (1) Magnetic fields and outflows from low-mass protostellar cores are randomly aligned, suggesting that the magnetic field at ~1000 au scales is not the dominant factor in setting the angular momentum of embedded disks and outflows. (2) Recent measurements of the thermal and dynamic properties in high-mass star-forming regions reveal small virial parameters, challenging the assumption of equilibrium star formation. However, we estimate that a magnetic field strength of a fraction of a mG to several mG in these objects could bring the dense gas close to a state of equilibrium. Finally, (3) We find that the small number of sources with hourglass-shaped magnetic field morphologies at 0.01 -- 0.1 pc scales cannot be explained purely by projection effects, suggesting that while it does occur occasionally, magnetically dominated core collapse is not the predominant mode of low- or high-mass star formation. [Abridged]
We have carried out interferometric observations of cyanopolyynes, HC$_{3}$N, HC$_{5}$N, and HC$_{7}$N, in the 36 GHz band toward the G28.28$-$0.36 high-mass star-forming region using the Karl G. Jansky Very Large Array (VLA) Ka-band receiver. The sp
Magnetic fields play a crucial role at all stages of the formation of low mass stars and planetary systems. In the final stages, in particular, they control the kinematics of in-falling gas from circumstellar discs, and the launching and collimation
The magnetic field plays an important role in every stage of the star-formation process from the collapse of the initial protostellar core to the stars arrival on the main sequence. Consequently, the goal of this science case is to explore a wide ran
Magnetic fields are present in a wide variety of stars throughout the HR diagram and play a role at basically all evolutionary stages, from very-low-mass dwarfs to very massive stars, and from young star-forming molecular clouds and protostellar accr
We present the first interferometric polarization maps of the NGC2024 FIR5 molecular core obtained with the BIMA array at approximately 2 arcsec resolution. We measure an average position angle of -60+-6 degrees in the main core of FIR5 and 54+-9 deg