ﻻ يوجد ملخص باللغة العربية
We show by atomistic simulations that, in the thermodynamic limit, the in-plane elastic moduli of graphene at finite temperature vanish with system size $ L $ as a power law $ ~ L^{-eta_u} $ with $ eta_u simeq 0.325 $, in agreement with the membrane theory. Our simulations clearly reveal the size and strain dependence of graphenes elastic moduli, allowing comparison to experimental data. Although the recently measured difference of a factor 2 between the asymptotic value of the Young modulus for tensilely strained systems and the value from {it ab initio} calculations remains unsolved, our results do explain the experimentally observed increase of more than a factor 2 for a tensile strain of only a few permille. We also discuss the scaling of the Poisson ratio, for which our simulations disagree with the predictions of the self-consistent screening approximation.
Due to atomically thin structure, graphene/hexagonal boron nitride (G/hBN) heterostructures are intensively sensitive to the external mechanical forces and deformations being applied to their lattice structure. In particular, strain can lead to the m
The superior intrinsic properties of graphene have been a key research focus for the past few years. However, external components, such as metallic contacts, serve not only as essential probing elements, but also give rise to an effective electron ca
Self-assembled quantum dots (QDs) are highly strained heterostructures. the lattice strain significantly modifies the electronic and optical properties of these devices. A universal behavior is observed in atomistic strain simulations (in terms of bo
Multilayer graphene (MLG) thin films are deposited on silicon oxide substrates by mechanical exfoliation (or scotch-tape method) from Kish graphite. The thickness and number of layers are determined from both Atomic Force Microscopy (AFM) and Raman S
We employ three dimensional x-ray coherent diffraction imaging to map the lattice strain distribution, and to probe the elastic properties of a single crystalline Ni (001) nanowire grown vertically on an amorphous Si02 || Si substrate. The reconstruc