ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the three-dimensional strain inhomogeneity and equilibrium elastic properties of single crystal Ni nanowires

524   0   0.0 ( 0 )
 نشر من قبل Oleg Shpyrko
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ three dimensional x-ray coherent diffraction imaging to map the lattice strain distribution, and to probe the elastic properties of a single crystalline Ni (001) nanowire grown vertically on an amorphous Si02 || Si substrate. The reconstructed density maps show that with increasing wire width, the equilibrium compressive stress in the core region decreases sharply while the surface tensile strain increases, and gradually trends to a nonzero constant. We use the retrieved projection of lattice distortion to predict the Youngs Modulus of the wire based on the elasticity theory.



قيم البحث

اقرأ أيضاً

Single-crystal carbon nanomaterials have led to great advances in nanotechnology. The first single-crystal carbon nanomaterial, fullerene, was fabricated in a zero-dimensional form. One-dimensional carbon nanotubes and two-dimensional graphene have s ince followed and continue to provide further impetus to this field. In this study, we fabricated designed three-dimensional (3D) single-crystal carbon architectures by using silicon carbide templates. For this method, a designed 3D SiC structure was transformed into a 3D freestanding single-crystal carbon structure that retained the original SiC structure by performing a simple single-step thermal process. The SiC structure inside the 3D carbon structure is self-etched, which results in a 3D freestanding carbon structure. The 3D carbon structure is a single crystal with the same hexagonal close-packed structure as graphene. The size of the carbon structures can be controlled from the nanoscale to the microscale, and arrays of these structures can be scaled up to the wafer scale. The 3D freestanding carbon structures were found to be mechanically stable even after repeated loading. The relationship between the reversible mechanical deformation of a carbon structure and its electrical conductance was also investigated. Our method of fabricating designed 3D freestanding single-crystal graphene architectures opens up prospects in the field of single-crystal carbon nanomaterials, and paves the way for the development of 3D single-crystal carbon devices.
In the experimental electroluminescence (EL) spectra of light-emitting diodes (LEDs) based on N-polar (In,Ga)N/GaN nanowires (NWs), we observed a double peak structure. The relative intensity of the two peaks evolves in a peculiar way with injected c urrent. Spatially and spectrally resolved EL maps confirmed the presence of two main transitions in the spectra, and suggested that they are emitted by the majority of single nano-LEDs. In order to elucidate the physical origin of this effect, we performed theoretical calculations of the strain, electric field, and charge density distributions both for planar LEDs and NW-LEDs. On this basis, we simulated also the EL spectra of these devices, which exhibit a double peak structure for N-polar heterostructures, both in the NW and the planar case. In contrast, this feature is not observed when Ga-polar planar LEDs are simulated. We found that the physical origin of the double peak structure is a stronger quantum-confined Stark effect occurring in the first and last quantum well of the N-polar heterostructures. The peculiar evolution of the relative peak intensities with injected current, seen only in the case of the NW-LED, is attributed to the three-dimensional strain variation resulting from elastic relaxation at the free sidewalls of the NWs. Therefore, this study provides important insights on the working principle of N-polar LEDs based on both planar and NW heterostructures.
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for M nGe based on the neutron scattering experiment as well as the Lorentz transmission electron microscopy observation. Equipped with a sophisticated spectral analysis method, we adopt finite temperature Greens function technique to calculate the longitudinal dc electric transport in such system. We consider conduction electrons interacting with spin waves of the topologically nontrivial spin texture, wherein fluctuations of monopolar emergent magnetic field enter. We study in detail the behavior of electric resistivity under the influence of temperature, external magnetic field and a characteristic monopole motion, especially a novel magnetoresistivity effect describing the latest experimental observations in MnGe, wherein a topological phase transition signifying strong correlation is identified.
Cylindrical magnetic nanowires with large transversal magnetocrystalline anisotropy have been shown to sustain non-trivial magnetic configurations resulting from the interplay of spatial confinement, exchange, and anisotropies. Exploiting these pecul iar 3D spin configurations and their solitonic inhomogeneities are prospected to improve magnetization switching in future spintronics, such as power-saving magnetic memory and logic applications. Here we employ holographic vector field electron tomography to reconstruct the remanent magnetic states in CoNi nanowires with 10 nm resolution in 3D, with a particular focus on domain walls between remanent states and ubiquitous real-structure effects stemming from irregular morphology and anisotropy variations. By tuning the applied magnetic field direction, both longitudinal and transverse multi-vortex states of different chiralities and peculiar 3D features such as shifted vortex cores are stabilized. The chiral domain wall between the longitudinal vortices of opposite chiralities exhibits a complex 3D shape characterized by a push out of the central vortex line and a gain in exchange and anisotropy energy. A similar complex 3D texture, including bent vortex lines, forms at the domain boundary between transverse-vortex states and longitudinal configurations. Micromagnetic simulations allow an understanding of the origin of the observed complex magnetic states.
We report on the direct correlation between the structural and optical properties of single, as-grown core-multi-shell GaAs/In$_{0.15}$Ga$_{0.85}$As/GaAs/AlAs/GaAs nanowires. Fabricated by molecular beam epitaxy on a pre-patterned Si(111) substrate, on a row of well separated nucleation sites, it was possible to access individual nanowires in the as-grown geometry. The polytype distribution along the growth axis of the nanowires was revealed by synchrotron-based nanoprobe X-ray diffraction techniques monitoring the axial 111 Bragg reflection. For the same nanowires, the spatially-resolved emission properties were obtained by cathodoluminescence hyperspectral linescans in a scanning electron microscope. Correlating both measurements, we reveal a blueshift of the shell quantum well emission energy combined with an increased emission intensity for segments exhibiting a mixed structure of alternating wurtzite and zincblende stacking compared with the pure crystal polytypes. The presence of this mixed structure was independently confirmed by cross-sectional transmission electron microscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا