ترغب بنشر مسار تعليمي؟ اضغط هنا

Interoperability in encoded quantum repeater networks

129   0   0.0 ( 0 )
 نشر من قبل Shota Nagayama
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The future of quantum repeater networking will require interoperability between various error correcting codes. A few specific code

قيم البحث

اقرأ أيضاً

Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of qu antum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstras algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstras algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.
A Quantum Key Distribution (QKD) network is an infrastructure capable of performing long-distance and high-rate secret key agreement with information-theoretic security. In this paper we study security properties of QKD networks based on trusted repe ater nodes. Such networks can already be deployed, based on current technology. We present an example of a trusted repeater QKD network, developed within the SECOQC project. The main focus is put on the study of secure key agreement over a trusted repeater QKD network, when some nodes are corrupted. We propose an original method, able to ensure the authenticity and privacy of the generated secret keys.
Quantum repeater networks have attracted attention for the implementation of long-distance and large-scale sharing of quantum states. Recently, researchers extended classical network coding, which is a technique for throughput enhancement, into quant um information. The utility of quantum network coding (QNC) has been shown under ideal conditions, but it has not been studied previously under conditions of noise and shortage of quantum resources. We analyzed QNC on a butterfly network, which can create end-to-end Bell pairs at twice the rate of the standard quantum network repeater approach. The joint fidelity of creating two Bell pairs has a small penalty for QNC relative to entanglement swapping. It will thus be useful when we care more about throughput than fidelity. We found that the output fidelity drops below 0.5 when the initial Bell pairs have fidelity F < 0.90, even with perfect local gates. Local gate errors have a larger impact on quantum network coding than on entanglement swapping.
We analyze how the performance of a quantum-repeater network depends on the protocol employed to distribute entanglement, and we find that the choice of repeater-to-repeater link protocol has a profound impact on communication rate as a function of h ardware parameters. We develop numerical simulations of quantum networks using different protocols, where the repeater hardware is modeled in terms of key performance parameters, such as photon generation rate and collection efficiency. These parameters are motivated by recent experimental demonstrations in quantum dots, trapped ions, and nitrogen-vacancy centers in diamond. We find that a quantum-dot repeater with the newest protocol (MidpointSource) delivers the highest communication rate when there is low probability of establishing entanglement per transmission, and in some cases the rate is orders of magnitude higher than other schemes. Our simulation tools can be used to evaluate communication protocols as part of designing a large-scale quantum network.
We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection . We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا