ﻻ يوجد ملخص باللغة العربية
Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstras algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstras algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.
The future of quantum repeater networking will require interoperability between various error correcting codes. A few specific code
The Quantum Internet is envisioned as the final stage of the quantum revolution, opening fundamentally new communications and computing capabilities, including the distributed quantum computing. But the Quantum Internet is governed by the laws of qua
Quantum repeater networks have attracted attention for the implementation of long-distance and large-scale sharing of quantum states. Recently, researchers extended classical network coding, which is a technique for throughput enhancement, into quant
We analyze how the performance of a quantum-repeater network depends on the protocol employed to distribute entanglement, and we find that the choice of repeater-to-repeater link protocol has a profound impact on communication rate as a function of h
A Quantum Key Distribution (QKD) network is an infrastructure capable of performing long-distance and high-rate secret key agreement with information-theoretic security. In this paper we study security properties of QKD networks based on trusted repe