ﻻ يوجد ملخص باللغة العربية
We propose a new approach to implement quantum repeaters for long distance quantum communication. Our protocol generates a backbone of encoded Bell pairs and uses the procedure of classical error correction during simultaneous entanglement connection. We illustrate that the repeater protocol with simple Calderbank-Shor-Steane (CSS) encoding can significantly extend the communication distance, while still maintaining a fast key generation rate.
We propose a hybrid quantum repeater protocol combining the advantages of continuous and discrete variables. The repeater is based on the previous work of Brask et al. [Phys. Rev. Lett. 105, 160501 (2010)] but we present two ways of improving this pr
We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fi
Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of qu
The future of quantum repeater networking will require interoperability between various error correcting codes. A few specific code
We present a quantum repeater protocol using atomic ensembles, linear optics and single-photon sources. Two local polarization entangled states of atomic ensembles $u$ and $d$ are generated by absorbing a single photon emitted by an on-demand single-