ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Thermal Conditions of the 6-m BTA Telescope Elements and the Telescope Dome Space

115   0   0.0 ( 0 )
 نشر من قبل Edward Emelianov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E.V. Emelianov




اسأل ChatGPT حول البحث

The results obtained using the temperature monitoring systems of the 6-m BTA telescope primary mirror, dome space, and external environment are reported. We consider the factors that affect the development of microturbulence in the near-mirror air layer and inside the dome space, variation of the telescope focal length with the temperature of its structures, variation of seeing due to temperature gradients inside the primary mirror of the 6-m telescope. The methods used in various observatories for reducing microturbulence are analyzed. We formulate suggestions concerning the improvement of the temperature monitoring system currently in operation and the system of automatic adjustment of the telescope focal length to compensate the thermal drift of the focus during observations.

قيم البحث

اقرأ أيضاً

We present the results of our spectropolarimetric observations for a number of active galactic nuclei (AGNs) carried out at the 6-m telescope with the SCORPIO focal reducer. The derived wavelength dependences of the polarization have been analyzed by taking into account the Faraday rotation of the polarization plane on the photon mean free path in a magnetized accretion disk. As a result, based on traditional accretion disk models, we have determined the magnetic field strength and distribution and a number of physical parameters of the accreting plasma in the region where the optical radiation is generated.
We introduce a project of new cooled infrared spectrometer-photometer for 6-m telescope BTA (Special Astrophysical Observatory of Russian Science Academy). The device would extend the wavelength range accessible for observations on the 6-m BTA telescope toward near infrared (0.8-2.5 um).
172 - A.V. Moiseev 2021
The scanning Fabry-Perot interferometer (FPI) - is the oldest method of optical 3D spectroscopy. It is still in use because of the high spectral resolution it provides over a large field of view. The history of the application of this method for the study of extended ob jects (nebulae and galaxies) and the technique of data reduction and analysis are discussed. The paper focuses on the performing observations with the scanning FPI on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS). The instrument is currently used as a part of the SCORPIO-2 multimode focal reducer. The results of studies of various galactic and extragalactic objects with the scanning FPI on the 6-m telescope - star-forming regions and young stellar objects, spiral, ring, dwarf and interacting galaxies, ionization cones of active galactic nuclei, galactic winds, etc. are briefly discussed. Further prospects for research with the scanning FPI of the SAO RAS are discussed.
We describe a device (adapter) for off-axis guiding and photometric calibration of wide-angle spectrographs operating in the prime focus of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. To compensate c oma in off-axis star images an achromatic lens corrector is used, which ensures maintaining image quality (FWHM) at a level of about 1 within 15 from the optical axis. The device has two 54-diameter movable guiding fields, which can move in 10 x 4.5 rectangular areas. The device can perform automatic search for guiding stars, use them to control the variations of atmospheric transmittance, and focus the telescope during exposure. The limiting magnitude of potential guiding stars is mR ~17 mag. The calibration path whose optical arrangement meets the telecentrism condition allows the spectrograph to be illuminated both by a source of line spectrum (a He-Ne-Ar filled lamp) and by a source of continuum spectrum. The latter is usually represented either by a halogen lamp or a set of light-emitting diodes, which provide illumination of approximately uniform intensity over the wavelength interval from 350 to 900 nm. The adapter is used for observations with SCORPIO-2 multimode focal reducer.
The Origins Space Telescope, one of four large Mission Concept studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins. We briefly describe in this article the key science themes and architecture for OST. With a sensitivity gain of up to a factor of 1,000 over any previous or planned mission, OST will open unprecedented discovery space, allow us to peer through an infrared window teeming with possibility. OST will fundamentally change our understanding of our cosmic origins - from the growth of galaxies and black holes, to uncovering the trail of water, to life signs in nearby Earth-size planets, and discoveries never imagined. Built to be highly adaptable, while addressing key science across many areas of astrophysics, OST will usher in a new era of infrared astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا