ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origins Space Telescope

116   0   0.0 ( 0 )
 نشر من قبل Cara Battersby
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Origins Space Telescope, one of four large Mission Concept studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins. We briefly describe in this article the key science themes and architecture for OST. With a sensitivity gain of up to a factor of 1,000 over any previous or planned mission, OST will open unprecedented discovery space, allow us to peer through an infrared window teeming with possibility. OST will fundamentally change our understanding of our cosmic origins - from the growth of galaxies and black holes, to uncovering the trail of water, to life signs in nearby Earth-size planets, and discoveries never imagined. Built to be highly adaptable, while addressing key science across many areas of astrophysics, OST will usher in a new era of infrared astronomy.



قيم البحث

اقرأ أيضاً

The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first galaxies and the rise of metals to the development of habitable worlds and present-day life. Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules, dust, water vapor and ice, and observations of extra-solar planetary atmospheres, protoplanetary disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 microns and is 1000 times more sensitive than its predecessors due to its large, cold (4.5 K) telescope and advanced instruments. Origins was one of four large missions studied by the community with support from NASA and industry in preparation for the 2020 Decadal Survey in Astrophysics. This is the final study report.
The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRSTs design where small adjustments could greatly improve its power as an astrometric instrument.
We propose a new mission called Space Project for Astrophysical and Cosmological Exploration (SPACE) as part on the ESA long term planning Voyage 2050 programme. SPACE will study galaxy evolution at the earliest times, with the key goals of charting the formation of the heavy elements, measuring the evolution of the galaxy luminosity function, tracing the build-up of stellar mass in galaxies over cosmic time, and finding the first super-massive black holes (SMBHs) to form. The mission will exploit a unique region of the parameter space, between the narrow ultra-deep surveys with HST and JWST, and shallow wide-field surveys such as Roman Space Telescope and EUCLID, and should yield by far the largest sample of any current or planned mission of very high redshift galaxies at z > 10 which are sufficiently bright for detailed follow-up spectroscopy. Crucially, we propose a wide-field spectroscopic near-IR + mid-IR capability which will greatly enhance our understanding of the first galaxies by detecting and identifying a statistical sample of the first galaxies and the first SMBH, and to chart the metal enrichment history of galaxies in the early Universe - potentially finding signatures of the very first stars to form from metal-free primordial gas. The wide-field and wavelength range of SPACE will also provide us a unique opportunity to study star formation by performing a wide survey of the Milky Way in the near-IR + mid-IR. This science project can be enabled either by a stand-alone ESA-led M mission or by an instrument for an L mission (with ESA and/or NASA, JAXA and other international space agencies) with a wide-field (sub-)millimetre capability at wavelength > 500 microns.
The Origins Space Telescope is one of four flagship missions under study for the 2020 Astrophysics Decadal Survey. With a 5.9 m cold (4.5 K) telescope deployed from space, Origins promises unprecedented sensitivity in the near-, mid-, and far-infrare d, from 2.8 - 588 $mu$m. This mandates the use of ultra-sensitive and stable detectors in all of the Origins instruments. At the present, no known detectors can meet Origins stability requirements in the near- to mid-infrared, or its sensitivity requirements in the far-infrared. In this work, we discuss the applicability of transition-edge sensors, as both calorimeters and bolometers, to meet these requirements, and lay out a path toward improving the present state-of-the-art.
Operating 1.5 million km from Earth at the Sun-Earth L2 Lagrange point, the Origins Space Telescope equipped with a slightly modified version of its HERO heterodyne instrument could function as a uniquely valuable node in a VLBI network. The unpreced ented angular resolution resulting from the combination of Origins with existing ground-based millimeter/submillimeter telescope arrays would increase the number of spatially resolvable black holes by a factor of a million, permit the study of these black holes across all of cosmic history, and enable new tests of general relativity by unveiling the photon ring substructure in the nearest black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا