ﻻ يوجد ملخص باللغة العربية
In the present paper, integrable semi-discrete and fully discrete analogues of a coupled short pulse (CSP) equation are constructed. The key of the construction is the bilinear forms and determinant structure of solutions of the CSP equation. We also construct Nsoliton solutions for the semi-discrete and fully discrete analogues of the CSP equations in the form of Casorati determinant. In the continuous limit, we show that the fully discrete CSP equation converges to the semi-discrete CSP equation, then further to the continuous CSP equation. Moreover, the integrable semi-discretization of the CSP equation is used as a selfadaptive moving mesh method for numerical simulations. The numerical results agree with the analytical results very well.
We first derive an integrable deformed hierarchy of short pulse equation and their Lax representation. Then we concentrated on the solution of integrable deformed short pulse equation (IDSPE). By proposing a generalized reciprocal transformation, we
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, space and angu
Kahan discretization is applicable to any system of ordinary differential equations on $mathbb R^n$ with a quadratic vector field, $dot{x}=f(x)=Q(x)+Bx+c$, and produces a birational map $xmapsto widetilde{x}$ according to the formula $(widetilde{x}-x
In the present paper, we study the defocusing complex short pulse (CSP) equations both geometrically and algebraically. From the geometric point of view, we establish a link of the complex coupled dispersionless (CCD) system with the motion of space
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In t