ﻻ يوجد ملخص باللغة العربية
We first derive an integrable deformed hierarchy of short pulse equation and their Lax representation. Then we concentrated on the solution of integrable deformed short pulse equation (IDSPE). By proposing a generalized reciprocal transformation, we find a new integrable deformed sine-Gordon equation (IDSGE) and its Lax representation. The multisoliton solutions, negaton solutions and positon solutions for the IDSGE and the N-loop soliton solutions, N-negaton and N-positon solutions for the IDSPE are presented. In the reduced case the new N-positon solutions and N-negaton solutions for short pulse equation are obtained.
This paper considers the whole hierarchy of bi-Hamiltonian integrable equations associated to each of the Short-Pulse (SP) equation and the Sine-Gordon (SG) equation. We prove that the transformation that relates the SP equation with the SG equation
In the present paper, integrable semi-discrete and fully discrete analogues of a coupled short pulse (CSP) equation are constructed. The key of the construction is the bilinear forms and determinant structure of solutions of the CSP equation. We also
We provide a general solution for a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary par
Using the integrability of the sinh-Gordon equation, we demonstrate the spectral stability of its elliptic solutions. By constructing a Lyapunov functional using higher-order conserved quantities of the sinh-Gordon equation, we show that these ellipt
An integrable extension of the Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) equations is investigated in this paper.We will refer to this integrable extension as the (4+1)-dimensional Fokas equation. The determinant expressions of soliton, b