ترغب بنشر مسار تعليمي؟ اضغط هنا

No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey

63   0   0.0 ( 0 )
 نشر من قبل Eric Suchyta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard Landy-Szalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. With this correction, our measured angular clustering is found to be in excellent agreement with that of a matched sample drawn from much deeper, higher-resolution space-based Cosmological Evolution Survey (COSMOS) imaging; over angular scales of $0.004^{circ} < theta < 0.2^{circ}$, we find a best-fit scaling amplitude between the DES and COSMOS measurements of $1.00 pm 0.09$. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.



قيم البحث

اقرأ أيضاً

We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (Mv > -4.7 mag) and span a range of physical sizes (17 pc < $r_{1/2}$ < 181 pc) and heliocentric distances (25 kpc < D < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (mu < 27.5 mag arcsec$^{-2}$). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 0.001) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20-30% of these would be spatially associated with the Magellanic Clouds.
Quadruply lensed quasars are extremely rare objects, but incredibly powerful cosmological tools. Only few dozen are known in the whole sky. Here we present the spectroscopic confirmation of two new quadruplets WG0214-2105 and WG2100-4452 discovered b y Agnello & Spiniello (2018) within the Dark Energy Survey (DES) public footprints. We have conducted spectroscopic follow-up of these systems with the Southern African Large Telescope as part of a program that aims at confirming the largest possible number of optically selected strong gravitational lensing systems in the Equatorial and Southern Hemisphere. For both systems, we present the spectra for the sources and deflectors that allowed us to estimate the source redshifts and unambiguously confirm their lensing nature. For the brighter deflector (WG2100-4452), we measure the stellar velocity dispersion from the spectrum. We also obtain photometry for both lenses, directly from DES multi-band images, isolating the lens galaxies from the quasar images. One of the quadruplets, WG0214-2105, was also observed by Pan-STARRS, allowing us to estimate the apparent brightness of each quasar image at two different epochs, and thus to find evidence for flux variability. This result could suggest a microlensing event for the faintest components, although intrinsic variability cannot be excluded with only two epochs. Finally, we present simple lens models for both quadruplets, obtaining Einstein radii, SIE velocity dispersions, ellipticities, and position angles of the lens systems, as well as time delay predictions assuming a concordance cosmological model.
We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data covering $sim 5000$ sq. deg. to a depth of $g > 23.5$ with a relative photo metric calibration uncertainty of $< 1 %$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $sim 50$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.
We perform a comparison of different approaches to star-galaxy classification using the broad-band photometric data from Year 1 of the Dark Energy Survey. This is done by performing a wide range of tests with and without external `truth information, which can be ported to other similar datasets. We make a broad evaluation of the performance of the classifiers in two science cases with DES data that are most affected by this systematic effect: large-scale structure and Milky Way studies. In general, even though the default morphological classifiers used for DES Y1 cosmology studies are sufficient to maintain a low level of systematic contamination from stellar mis-classification, contamination can be reduced to the O(1%) level by using multi-epoch and infrared information from external datasets. For Milky Way studies the stellar sample can be augmented by ~20% for a given flux limit. Reference catalogs used in this work will be made available upon publication.
Measurements of the galaxy stellar mass function are crucial to understand the formation of galaxies in the Universe. In a hierarchical clustering paradigm it is plausible that there is a connection between the properties of galaxies and their enviro nments. Evidence for environmental trends has been established in the local Universe. The Dark Energy Survey (DES) provides large photometric datasets that enable further investigation of the assembly of mass. In this study we use ~3.2 million galaxies from the (South Pole Telescope) SPT-East field in the DES science verification (SV) dataset. From grizY photometry we derive galaxy stellar masses and absolute magnitudes, and determine the errors on these properties using Monte-Carlo simulations using the full photometric redshift probability distributions. We compute galaxy environments using a fixed conical aperture for a range of scales. We construct galaxy environment probability distribution functions and investigate the dependence of the environment errors on the aperture parameters. We compute the environment components of the galaxy stellar mass function for the redshift range 0.15<z<1.05. For z<0.75 we find that the fraction of massive galaxies is larger in high density environment than in low density environments. We show that the low density and high density components converge with increasing redshift up to z~1.0 where the shapes of the mass function components are indistinguishable. Our study shows how high density structures build up around massive galaxies through cosmic time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا