ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic confirmation and modelling of two lensed quadruple quasars in the Dark Energy Survey public footprint

73   0   0.0 ( 0 )
 نشر من قبل Chiara Spiniello Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quadruply lensed quasars are extremely rare objects, but incredibly powerful cosmological tools. Only few dozen are known in the whole sky. Here we present the spectroscopic confirmation of two new quadruplets WG0214-2105 and WG2100-4452 discovered by Agnello & Spiniello (2018) within the Dark Energy Survey (DES) public footprints. We have conducted spectroscopic follow-up of these systems with the Southern African Large Telescope as part of a program that aims at confirming the largest possible number of optically selected strong gravitational lensing systems in the Equatorial and Southern Hemisphere. For both systems, we present the spectra for the sources and deflectors that allowed us to estimate the source redshifts and unambiguously confirm their lensing nature. For the brighter deflector (WG2100-4452), we measure the stellar velocity dispersion from the spectrum. We also obtain photometry for both lenses, directly from DES multi-band images, isolating the lens galaxies from the quasar images. One of the quadruplets, WG0214-2105, was also observed by Pan-STARRS, allowing us to estimate the apparent brightness of each quasar image at two different epochs, and thus to find evidence for flux variability. This result could suggest a microlensing event for the faintest components, although intrinsic variability cannot be excluded with only two epochs. Finally, we present simple lens models for both quadruplets, obtaining Einstein radii, SIE velocity dispersions, ellipticities, and position angles of the lens systems, as well as time delay predictions assuming a concordance cosmological model.

قيم البحث

اقرأ أيضاً

We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extende d morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at $z_{s}=1.64.$ The Einstein Radius estimated from the DES images is $0.51$. DES J2200+0110 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at $z_{s}=2.38$ and absorption compatible with Mg II and Fe II at $z_{l}=0.799$, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. The Einstein Radius is $0.68$ corresponding to an enclosed mass of $1.6times10^{11},M_{odot}.$ Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.
85 - Richard Luhtaru 2021
Among known strongly lensed quasar systems, ~25% have gravitational potentials sufficiently flat (and sources sufficiently well aligned) to produce four images rather than two. The projected flattening of the lensing galaxy and tides from neighboring galaxies both contribute to the potentials quadrupole. Witts hyperbola and Wynnes ellipse permit determination of the overall quadrupole from the positions of the quasar images. The position of the lensing galaxy resolves the distinct contributions of intrinsic ellipticity and tidal shear to that quadrupole. Among 31 quadruply lensed quasars systems with statistically significant decompositions, 15 are either reliably ($2sigma$) or provisionally ($1sigma$) shear-dominated and 11 are either reliably or provisionally ellipticity-dominated. For the remaining 8, the two effects make roughly equal contributions to the combined cross section (newly derived here) for quadruple lensing. This observational result is strongly at variance with the ellipticity-dominated forecast of Oguri & Marshall (2010).
132 - B. Nord , E. Buckley-Geer , H. Lin 2019
We describe the observation and confirmation of bconfirmtext new strong gravitational lenses discovered in Year 1 data from the Dark Energy Survey (DES). We created candidate lists based on a) galaxy group and cluster samples and b) photometrically selected galaxy samples. We selected 46 candidates through visual inspection and then used the Gemini Multi-Object Spectrograph (GMOS) at the Gemini South telescope to acquire spectroscopic follow-up of 21 of these candidates. Through analysis of this spectroscopic follow-up data, we confirmed nine new lensing systems and rejected 2 candidates, but the analysis was inconclusive on 10 candidates. For each of the confirmed systems, we report measured spectroscopic properties, estimated einsteinradiussub, and estimated enclosed masses. The sources that we targeted have an i-band surface brightness range of iSB ~ 22 - 24 mag arcsec^2 and a spectroscopic redshift range of zspec ~0.8 - 2.6. The lens galaxies have a photometric redshift range of zlens ~ 0.3 - 0.7. The lensing systems range in image-lens separation 2 - 9 arcsec and in enclosed mass 10^12 - 10^13 Msol.
We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (Mv > -4.7 mag) and span a range of physical sizes (17 pc < $r_{1/2}$ < 181 pc) and heliocentric distances (25 kpc < D < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (mu < 27.5 mag arcsec$^{-2}$). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 0.001) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20-30% of these would be spatially associated with the Magellanic Clouds.
We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~100 0 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called changing-look quasars, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا