ترغب بنشر مسار تعليمي؟ اضغط هنا

Eight Ultra-faint Galaxy Candidates Discovered in Year Two of the Dark Energy Survey

274   0   0.0 ( 0 )
 نشر من قبل Alex Drlica-Wagner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two lower-confidence candidates are identified in regions of non-uniform survey coverage. The new stellar systems are found by three independent automated search techniques and are identified as overdensities of stars, consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (Mv > -4.7 mag) and span a range of physical sizes (17 pc < $r_{1/2}$ < 181 pc) and heliocentric distances (25 kpc < D < 214 kpc). All of the new systems have central surface brightnesses consistent with known ultra-faint dwarf galaxies (mu < 27.5 mag arcsec$^{-2}$). Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies. Most of the candidates are found in the southern part of the DES footprint close to the Magellanic Clouds. We find that the DES data alone exclude (p < 0.001) a spatially isotropic distribution of Milky Way satellites and that the observed distribution can be well, though not uniquely, described by an association between several of the DES satellites and the Magellanic system. Our model predicts that the full sky may hold ~100 ultra-faint galaxies with physical properties comparable to the DES satellites and that 20-30% of these would be spatially associated with the Magellanic Clouds.



قيم البحث

اقرأ أيضاً

We report the discovery of eight new Milky Way companions in ~1,800 deg^2 of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual sta rs consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M_V from -2.2 mag to -7.4 mag), physical sizes (10 pc to 170 pc), and heliocentric distances (30 kpc to 330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.
We report a new ultra-faint stellar system found in Dark Energy Camera data from the first observing run of the Magellanic Satellites Survey (MagLiteS). MagLiteS J0644-5953 (Pictor II or Pic II) is a low surface brightness ({mu} = 28.5 mag arcsec$^{- 2}$ within its half-light radius) resolved overdensity of old and metal-poor stars located at a heliocentric distance of 45 kpc. The physical size (r$_{1/2}$ = 46 pc) and low luminosity (Mv = -3.2 mag) of this satellite are consistent with the locus of spectroscopically confirmed ultra-faint galaxies. MagLiteS J0644-5953 (Pic II) is located 11.3 kpc from the Large Magellanic Cloud (LMC), and comparisons with simulation results in the literature suggest that this satellite was likely accreted with the LMC. The close proximity of MagLiteS J0644-5953 (Pic II) to the LMC also makes it the most likely ultra-faint galaxy candidate to still be gravitationally bound to the LMC.
117 - E. Luque , A. Pieres , B. Santiago 2016
We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111-1341 and DES J0225+0304, are located at a heliocentric distance of ~ 25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~ 1.73 kpc (DES J0111-1341) and ~ 0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (r_h ~ 4.55 pc) and luminosity (M_V ~ +0.3) of DES J0111-1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (r_h ~ 18.55 pc) and luminosity (M_V ~ -1.1) of DES J0225+0304 place it in an ambiguous region of size-luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (-2.18 < [Fe/H] < -0.95) and distance gradient (23 kpc < D_sun < 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111-1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.
We present results from the analysis of WIYN pODI imaging of 23 ultra-compact high-velocity clouds (UCHVCs), which were identified in the ALFALFA HI survey as possible dwarf galaxies in or near the Local Group. To search for a resolved stellar popula tion associated with the HI gas in these objects, we carried out a series of steps designed to identify stellar overdensities in our optical images. We identify five objects that are likely stellar counterparts to the UCHVCs, at distances of $sim 350$ kpc to $sim 1.6$ Mpc. Two of the counterparts were already described in Janesh et al. (2015) and Janesh et al. (2017); the estimated distance and detection significance for one of them changed in the final analysis of the full pODI data set. At their estimated distances, the detected objects have HI masses from $2 times 10^4$ to $3 times 10^6$ Msun, $M_V$ from -1.4 to -7.1, and stellar masses from $4 times 10^2$ to $4 times 10^5$ Msun. None of the objects shows evidence of a young stellar population. Their properties would make the UCHVCs some of the most extreme objects in and around the Local Group, comparable to ultra faint dwarf galaxies in their stellar populations, but with significant gas content. Such objects probe the extreme end of the galaxy mass function, and provide a testbed for theories regarding the baryonic feedback processes that impact star formation and galaxy evolution in this low-mass regime.
We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data covering $sim 5000$ sq. deg. to a depth of $g > 23.5$ with a relative photo metric calibration uncertainty of $< 1 %$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $sim 50$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا